3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries

被引:76
作者
Feng, Daoyan [1 ]
Yang, Hui [1 ]
Guo, Xingzhong [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnFe2O4; Sol-gel; Phase separation; Hierarchically porous structure; Li-ion batteries; ENHANCED LITHIUM STORAGE; SOL-GEL SYNTHESIS; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; SPECIAL EMPHASIS; FACILE SYNTHESIS; CYCLE STABILITY; RATE CAPABILITY; NANOPARTICLES;
D O I
10.1016/j.cej.2018.08.202
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
3-Dimensional hierarchically porous ZnFe2O4/C composites with interconnected macropores and co-continuous hollow skeletons are facilely synthesized and used as anode materials for Li-ion batteries. The interconnected macropores impede the agglomeration of primary particles and buffer the volumetric variations, hollow mesoporous skeletons not only improve the interfacial contact area between electrode and electrolyte but also facilitate lithium ions transfer rate. Moreover, N-doped carbon layer further enhances the conductivity and mechanical strength of skeletons, as well as accelerates electron transfer during repeated discharge and charge process. The as-prepared 3-dimensional hierarchically porous ZnFe2O4/C composites possess excellent Li-ion storage properties, delivering a high reversible capacity of 972 mAh g(-1) at 200 mA g(-1) after 100 cycles and a decent specific capacity of 711 mAh g(-1) even at a large current density of 1000 mA g(-1) after 400 cycles. These values are among the highest reported for ZnFe2O4-based materials with different morphologies and nanostructures. The resultant ZnFe2O4/C composites display the potential practical application for high-performance Li-ion batteries.
引用
收藏
页码:687 / 696
页数:10
相关论文
共 88 条
[1]   Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2015, 5 (13)
[2]  
Arndt KF, 1999, ACTA POLYM, V50, P383, DOI 10.1002/(SICI)1521-4044(19991201)50:11/12<383::AID-APOL383>3.3.CO
[3]  
2-Q
[4]   Core-shell N-doped carbon coated zinc ferrite nanofibers with enhanced Li-storage behaviors: A promising anode for Li-ion batteries [J].
Bao, R. Q. ;
Zhang, Y. R. ;
Wang, Z. L. ;
Liu, Y. ;
Hou, L. R. ;
Yuan, C. Z. .
MATERIALS LETTERS, 2018, 224 :89-91
[5]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[6]   Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Kloepsch, Richard ;
Krueger, Steffen ;
Fiedler, Martin ;
Schmitz, Rene ;
Baither, Dietmar ;
Winter, Martin ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2013, 3 (04) :513-523
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   Hierarchical Porous Acetylene Black/ZnFe2O4@Carbon Hybrid Materials with High Capacity and Robust Cycling Performance for Li-ion Batteries [J].
Cai, Junjie ;
Wu, Chun ;
Zhu, Ying ;
Shen, Pei Kang ;
Zhang, Kaili .
ELECTROCHIMICA ACTA, 2016, 187 :584-592
[9]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473