The Fundamental Theorem for weak braided bimonads

被引:6
作者
Mesablishvili, Bachuki [1 ]
Wisbauer, Robert [2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6,Tamarashvili Str, Tbilisi 0177, Georgia
[2] HHU, Dept Math, D-40225 Dusseldorf, Germany
基金
美国国家科学基金会;
关键词
(Co)monads; Entwinings; Weak bimonads; Weak Hopf monads; GALOIS FUNCTORS; HOPF-ALGEBRAS; BIALGEBRAS; COMONADS; MONADS;
D O I
10.1016/j.jalgebra.2017.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theories of (Hopf) bialgebras and weak (Hopf) bialgebras have been introduced for vector spantr, categories over fields and make heavily use of the tensor product. As first generalisations, these notions were formulated for monoidal categories, with braidings if needed. The present authors developed a theory of bimonads and Hopf monads H on arbitrary categories A, employing distributive laws, allowing for a general form of the Fundamental Theorem for Hopf algebras. For tau-bimonads H, properties of braided (Hopf) bialgebras were captured by requiring a Yang Baxter operator tau : HH -> HH. The purpose of this paper is to extend the features of weak (Hopf) bialgebras to this general setting including an appropriate form of the Fundamental Theorem. This subsumes the theory of braided Hopf algebras (based on weak Yang Baxter operators) as considered by Alonso Alvarez and others. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 103
页数:49
相关论文
共 33 条
[1]   Weak Hopf algebras and weak Yang-Baxter operators [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. .
JOURNAL OF ALGEBRA, 2008, 320 (05) :2101-2143
[2]   WEAK BRAIDED BIALGEBRAS AND WEAK ENTWINING STRUCTURES [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) :306-316
[3]   Weak Braided Hopf Algebras [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2423-2458
[4]  
[Anonymous], 2006, Theory Appl. Categ
[5]  
[Anonymous], 1971, GRADUATE TEXTS MATH
[6]  
Beck Jon, 1969, SEMINAR TRIPLES CATE, P119, DOI 10.1007/BFb0083084
[7]   WEAK BIALGEBRAS AND MONOIDAL CATEGORIES [J].
Boehm, G. ;
Caenepeel, S. ;
Janssen, K. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) :4584-4607
[8]   Weak bimonads and weak Hopf monads [J].
Boehm, Gabriella ;
Lack, Stephen ;
Street, Ross .
JOURNAL OF ALGEBRA, 2011, 328 (01) :1-30
[9]   The weak theory of monads [J].
Boehm, Gabriella .
ADVANCES IN MATHEMATICS, 2010, 225 (01) :1-32
[10]  
Böhm G, 2009, HBK ALGEBR, V6, P173, DOI 10.1016/S1570-7954(08)00205-2