Continued Warming of the Permafrost Regions Over the Northern Hemisphere Under Future Climate Change

被引:24
作者
Hu, Guojie [1 ]
Zhao, Lin [2 ]
Wu, Tonghua [1 ,3 ,4 ]
Wu, Xiaodong [1 ]
Park, Hotaek [5 ]
Li, Ren [1 ]
Zhu, Xiaofan [1 ]
Ni, Jie [1 ]
Zou, Defu [1 ]
Hao, Junming [6 ]
Li, Wangping [6 ]
机构
[1] Chinese Acad Sci, Cryosphere Res Stn Qinghai Tibet Plateau, State Key Lab Cryospher Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab, Guangzhou, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] JAMSTEC, Inst Arctic Climate & Environm Res, Yokosuka, Kanagawa, Japan
[6] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
air temperature; permafrost; warming trend; CMIP6; Northern Hemisphere; PRONH; THERMAL STATE; POLAR AMPLIFICATION; SOIL-TEMPERATURE; CMIP6; MODELS; AIR; CARBON; PRECIPITATION; VARIABILITY; PROJECTION; CO2;
D O I
10.1029/2022EF002835
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Surface air temperatures can directly affect the thermal state of permafrost in the permafrost region of the Northern Hemisphere (PRONH). It is necessary to understand the trends in air temperatures and consider actual CMIP future scenario output instead of a linear temperature increase over different permafrost regions. In this study, air temperatures from 23 models of the sixth coupled-model intercomparison project (CMIP6) are evaluated against observational data from the PRONH. It is shown that most of the models reasonably represent the dominant characteristics of air temperature variations. Under three different future scenarios, air temperature and warming trends are examined using an optimal model ensemble. Results show that mean annual air temperature (MAAT) is higher in sporadic-permafrost and isolated-permafrost regions than in continuous-permafrost regions. MAAT warming rates were 0.10 degrees C/decade and 0.35 degrees C/decade from 1900 to 2014 and from 1980 to 2014, respectively, and were 0.09 degrees C/decade, 0.38 degrees C/decade, and 0.95 degrees C/decade from 2015 to 2100 under the low- to high-emission scenarios. Air temperature varies considerably between the high-altitude, transitional, and high-latitude permafrost regions (HLR), and warming trends are the greatest in HLR under future scenarios. Moreover, warming trends in different permafrost classes vary little from the historical values from 1900 to 2014, and with a gradual increase from isolated-permafrost regions to continuous-permafrost regions under future scenarios. The results suggested that air temperatures in the PRONH warmed approximately 1.6 times faster than global air temperatures from 1980 to 2014 and under the three future scenarios.
引用
收藏
页数:21
相关论文
共 120 条
[1]  
[Anonymous], 2009, Bull. Amer. Meteor. Soc
[2]   Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming [J].
Bekryaev, Roman V. ;
Polyakov, Igor V. ;
Alexeev, Vladimir A. .
JOURNAL OF CLIMATE, 2010, 23 (14) :3888-3906
[3]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change [J].
Burke, Eleanor J. ;
Zhang, Yu ;
Krinner, Gerhard .
CRYOSPHERE, 2020, 14 (09) :3155-3174
[5]   Comment on "A projection of severe near-surface permafrost degradation during the 21st century" by David M. Lawrence and Andrew G. Slater [J].
Burn, C. R. ;
Nelson, F. E. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (21)
[6]   Permafrost and climate change at Herschel Island (Qikiqtaruq), Yukon Territory, Canada [J].
Burn, C. R. ;
Zhang, Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
[7]   Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties [J].
Cai, Ziyi ;
You, Qinglong ;
Wu, Fangying ;
Chen, Hans W. ;
Chen, Deliang ;
Cohen, Judah .
JOURNAL OF CLIMATE, 2021, 34 (12) :4871-4892
[8]  
Chadburn SE, 2017, NAT CLIM CHANGE, V7, P340, DOI [10.1038/NCLIMATE3262, 10.1038/nclimate3262]
[9]   Differences in Radiative Forcing, Not Sensitivity, Explain Differences in Summertime Land Temperature Variance Change Between CMIP5 and CMIP6 [J].
Chan, Duo ;
Rigden, Angela ;
Proctor, Jonathan ;
Chan, Pak Wah ;
Huybers, Peter .
EARTHS FUTURE, 2022, 10 (02)
[10]   Role of land-surface changes in Arctic summer warming [J].
Chapin, FS ;
Sturm, M ;
Serreze, MC ;
McFadden, JP ;
Key, JR ;
Lloyd, AH ;
McGuire, AD ;
Rupp, TS ;
Lynch, AH ;
Schimel, JP ;
Beringer, J ;
Chapman, WL ;
Epstein, HE ;
Euskirchen, ES ;
Hinzman, LD ;
Jia, G ;
Ping, CL ;
Tape, KD ;
Thompson, CDC ;
Walker, DA ;
Welker, JM .
SCIENCE, 2005, 310 (5748) :657-660