Drawing from justice theories to support targets of online harassment
被引:44
|
作者:
Schoenebeck, Sarita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USAUniv Michigan, Sch Informat, Ann Arbor, MI 48109 USA
Schoenebeck, Sarita
[1
]
Haimson, Oliver L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USAUniv Michigan, Sch Informat, Ann Arbor, MI 48109 USA
Haimson, Oliver L.
[1
]
Nakamura, Lisa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Amer Culture, Ann Arbor, MI 48109 USA
Univ Michigan, Digital Studies Inst, Ann Arbor, MI 48109 USAUniv Michigan, Sch Informat, Ann Arbor, MI 48109 USA
Nakamura, Lisa
[2
,3
]
机构:
[1] Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Amer Culture, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Digital Studies Inst, Ann Arbor, MI 48109 USA
Most content moderation approaches in the United States rely on criminal justice models that sanction offenders via content removal or user bans. However, these models write the online harassment targets out of the justice-seeking process. Via an online survey with US participants (N = 573), this research draws from justice theories to investigate approaches for supporting targets of online harassment. We uncover preferences for banning offenders, removing content, and apologies, but aversion to mediation and adjusting targets' audiences. Preferences vary by identities (e.g. transgender participants on average find more exposure to be undesirable; American Indian or Alaska Native participants on average find payment to be unfair) and by social media behaviors (e.g. Instagram users report payment as just and fair). Our results suggest that a one-size-fits-all approach will fail some users while privileging others. We propose a broader theoretical and empirical landscape for supporting online harassment targets.