CONSTRUCTION AND CONVERGENCE STUDY OF SCHEMES PRESERVING THE ELLIPTIC LOCAL MAXIMUM PRINCIPLE

被引:88
作者
Droniou, Jerome [1 ]
Le Potier, Christophe [2 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, CC 051, F-34095 Montpellier 5, France
[2] CEA Saclay, DEN, DM2S, SFME, F-91191 Gif Sur Yvette, France
关键词
finite volumes; anisotropic heterogeneous diffusion; maximum principle; convergence study; numerical tests; FINITE-VOLUME METHOD; ANISOTROPIC DIFFUSION OPERATORS; NAVIER-STOKES EQUATIONS; POLYGONAL MESHES; UNSTRUCTURED GRIDS; POLYHEDRAL MESHES; DIFFERENCE METHOD; DISCRETIZATION; FAMILY; MEDIA;
D O I
10.1137/090770849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method to approximate (in any space dimension) diffusion equations with schemes having a specific structure; this structure ensures that the discrete local maximum and minimum principles are respected, and that no spurious oscillations appear in the solutions. When applied in a transient setting on models of concentration equations, it guaranties in particular that the approximate solutions stay between the physical bounds. We make a theoretical study of the constructed schemes, proving under a coercivity assumption that their solutions converge to the solution of the PDE. Several numerical results are also provided; they help us understand how the parameters of the method should be chosen. These results also show the practical efficiency of the method, even when applied to complex models.
引用
收藏
页码:459 / 490
页数:32
相关论文
共 38 条
[1]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[3]   THE G METHOD FOR HETEROGENEOUS ANISOTROPIC DIFFUSION ON GENERAL MESHES [J].
Agelas, Leo ;
Di Pietro, Daniele A. ;
Droniou, Jerome .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04) :597-625
[4]   A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media [J].
Agelas, Leo ;
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :673-676
[5]  
[Anonymous], 2008, FRONTIERS APPL MATH
[6]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[7]  
[Anonymous], [No title captured]
[8]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[9]  
BOURGEAT A, 2002, COUPLEX TEST CASES N
[10]   FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES [J].
Boyer, Franck ;
Hubert, Florence .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3032-3070