Characterizing Sobolev spaces of vector-valued functions

被引:1
|
作者
Caamano, Ivan [1 ]
Jaramillo, Jesus A. [1 ,2 ]
Prieto, Angeles [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Inst Matemat Interdisciplinar IMI, Madrid 28040, Spain
关键词
Sobolev spaces; Vector-valued functions;
D O I
10.1016/j.jmaa.2022.126250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Omega subset of R-N and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R-1,R-p (Omega, V), where 1 <= p <= infinity, in terms of the existence of partial metric derivatives or partial w*-derivatives with suitable integrability properties. In the case p = infinity the Sobolev-Reshetnyak space R-1,R-infinity (Omega, V) is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V = l(infinity). (C) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 50 条