hctsa: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction

被引:175
作者
Fulcher, Ben D. [1 ,2 ]
Jones, Nick S. [3 ]
机构
[1] Monash Univ, MICCN, Wellington Rd, Clayton, Vic 3800, Australia
[2] Univ Sydney, Sch Phys, Phys Rd, Camperdown, NSW 2006, Australia
[3] Imperial Coll London, Math Dept, Huxley Bldg, London SW7 2AZ, England
基金
澳大利亚国家健康与医学研究理事会; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
CLASSIFICATION; SLEEP;
D O I
10.1016/j.cels.2017.10.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phenotype measurements frequently take the form of time series, but we currently lack a systematic method for relating these complex data streams to scientifically meaningful outcomes, such as relating the movement dynamics of organisms to their genotype or measurements of brain dynamics of a patient to their disease diagnosis. Previous work addressed this problem by comparing implementations of thousands of diverse scientific time-series analysis methods in an approach termed highly comparative time-series analysis. Here, we introduce hctsa, a software tool for applying this methodological approach to data. hctsa includes an architecture for computing over 7,700 time-series features and a suite of analysis and visualization algorithms to automatically select useful and interpretable time-series features for a given application. Using exemplar applications to high-throughput phenotyping experiments, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in time-series data.
引用
收藏
页码:527 / +
页数:8
相关论文
共 19 条
[1]   A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion [J].
Brown, Andre E. X. ;
Yemini, Eviatar I. ;
Grundy, Laura J. ;
Jucikas, Tadas ;
Schafer, William R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (02) :791-796
[2]   Multiscale entropy analysis of biological signals [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW E, 2005, 71 (02)
[3]   High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the "Tracker'' Program [J].
Donelson, Nathan ;
Kim, Eugene Z. ;
Slawson, Justin B. ;
Vecsey, Christopher G. ;
Huber, Robert ;
Griffith, Leslie C. .
PLOS ONE, 2012, 7 (05)
[4]  
Fulcher BD, 2012, IEEE ENG MED BIO, P3135, DOI 10.1109/EMBC.2012.6346629
[5]   Highly Comparative Feature-Based Time-Series Classification [J].
Fulcher, Ben D. ;
Jones, Nick S. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (12) :3026-3037
[6]   Highly comparative time-series analysis: the empirical structure of time series and their methods [J].
Fulcher, Ben D. ;
Little, Max A. ;
Jones, Nick S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2013, 10 (83)
[7]   High-throughput mouse phenotyping [J].
Gates, Hilary ;
Mallon, Ann-Marie ;
Brown, Steve D. M. .
METHODS, 2011, 53 (04) :394-404
[8]   Ethoscopes: An open platform for high-throughput ethomics [J].
Geissmann, Quentin ;
Rodriguez, Luis Garcia ;
Beckwith, Esteban J. ;
French, Alice S. ;
Jamasb, Arian R. ;
Gilestro, Giorgio F. .
PLOS BIOLOGY, 2017, 15 (10)
[9]   Video tracking and analysis of sleep in Drosophila melanogaster [J].
Gilestro, Giorgio F. .
NATURE PROTOCOLS, 2012, 7 (05) :995-1007
[10]  
Gomez-Marin A., 2016, BIORXIV