Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior

被引:56
作者
Friesen, Alex [1 ,2 ]
Hildebrand, Stephan [1 ,2 ]
Horsthemke, Fabian [1 ,2 ]
Boerner, Markus [1 ,2 ]
Kloepsch, Richard [1 ]
Niehoff, Philip [1 ]
Schappacher, Falko M. [1 ]
Winter, Martin [1 ,2 ,3 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[3] Forschungszentrum Juelich GmbH, Helmholtz Inst Muenster, IEK 12,Corrensstr 46, D-48149 Munster, Germany
关键词
Lithium ion battery; Cyclic aging; Low temperature performance; Al2O3; coating; Abuse testing; FLUOROETHYLENE CARBONATE; PERFORMANCE; ELECTROLYTE; METAL; CELLS; QUANTIFICATION; GRAPHITE;
D O I
10.1016/j.jpowsour.2017.07.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commercial 18650-type lithium ion cells employing an Al2O3 coating on the anode surface as a safety feature are investigated regarding cycling behavior at low temperatures and related safety. Due to irreversible lithium metal deposition, the cells show a pronounced capacity fading, especially in the first cycles, leading to a shortened lifetime. The amount of reversibly strippable lithium metal decreases with every cycle. Post-mortem analysis of electrochemically aged anodes reveals a thick layer of lithium metal deposited beneath the coating. The Al2O3 coating on the electrode surface is mostly intact. The lithium metal deposition and dissolution mechanisms were determined combining electrochemical and postmortem methods. Moreover, the cell response to mechanical and thermal abuse was determined in an open and adiabatic system, revealing a similar behavior of fresh and aged cells, thus, demonstrating no deterioration in the safety behavior despite the presence of a thick lithium metal layer on the anode surface. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 50 条
  • [21] Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature
    Bo-Yi Lee
    Marcin Krajewski
    Ming-Kuen Huang
    Panitat Hasin
    Jeng-Yu Lin
    [J]. Journal of Solid State Electrochemistry, 2021, 25 : 2665 - 2674
  • [22] CuO-ZnO submicroflakes with nanolayered Al2O3 coatings as high performance anode materials in lithium-ion batteries
    Sun, Xiaolei
    Jing, Meiyi
    Dong, Hong
    Xie, Wenhe
    Luo, Feng
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 953
  • [23] Enhancement of Low-Temperature Cycling Performance of Lithium-Ion Batteries by use of Dual Cosolvent
    Oh, Jin-Young
    Seok, Jin-Hong
    Lim, Da-Ae
    Lim, Sung-Jae
    Kim, Dong-Won
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (10)
  • [24] Electrochemical behavior of nanocrystalline α-Fe2O3 anode material for lithium-ion batteries
    Vasilchina, H.
    Uzunova, S.
    Stankulov, T.
    Momchilov, A.
    Uzunov, I.
    Puresheva, B.
    [J]. FUNCTIONAL PROPERTIES OF NANOSTRUCTURED MATERIALS, 2006, 223 : 473 - +
  • [25] Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries
    Xiong Li-Long
    Xu You-Long
    Zhang Cheng
    Tao Tao
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (05) : 1177 - 1182
  • [26] Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2
    Liu, Wen
    Li, Xifei
    Xiong, Dongbin
    Hao, Youchen
    Li, Jianwei
    Kou, Huari
    Yan, Bo
    Li, Dejun
    Lu, Shigang
    Koo, Alicia
    Adair, Keegan
    Sun, Xueliang
    [J]. NANO ENERGY, 2018, 44 : 111 - 120
  • [27] Possibility of carbon coating with Li4Ti5O12 at low temperature for high rate of lithium ion batteries
    Hong, J. -E.
    Oh, R. -G.
    Yang, W. -G.
    Ryu, K. -S.
    [J]. MATERIALS TECHNOLOGY, 2015, 30 (A1) : A18 - A23
  • [28] Precise growth of Al2O3/SnO2/CNTs composites by a two-step atomic layer deposition and their application as an improved anode for lithium ion batteries
    Zhu, Shengyun
    Liu, Junqing
    Sun, Jiaming
    [J]. ELECTROCHIMICA ACTA, 2019, 319 : 490 - 498
  • [29] Core-Shell Structured Polyimide@?-Al2O3 Nanofiber Separators for Lithium-Ion Batteries
    Chen, Yuluo
    Luo, Jinpeng
    Xu, Hang
    Hou, Xinran
    Gong, Man
    Yang, Changshu
    Liu, HuiCong
    Wei, Xiuqin
    Zhou, Lang
    Yin, Chuanqiang
    Li, Xiaomin
    [J]. ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1692 - 1701
  • [30] Mesoporous carbon-Cr2O3 composite as an anode material for lithium ion batteries
    Guo, Bingkun
    Chi, Miaofang
    Sun, Xiao-Guang
    Dai, Sheng
    [J]. JOURNAL OF POWER SOURCES, 2012, 205 : 495 - 499