A Fixed Point Approach to the Stability of a General Mixed AQCQ-Functional Equation in Non-Archimedean Normed Spaces

被引:16
作者
Xu, Tian Zhou [1 ]
Rassias, John Michael [2 ]
Xu, Wan Xin [3 ]
机构
[1] Beijing Inst Technol, Sch Sci, Dept Math, Beijing 100081, Peoples R China
[2] Natl & Capodistrian Univ Athens, Sect Math & Informat, Pedag Dept EE, Athens 15342, Greece
[3] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
MAPPINGS; THEOREM;
D O I
10.1155/2010/812545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the fixed point methods, we prove the generalized Hyers-Ulam stability of the general mixed additive-quadratic-cubic-quartic functional equation f(x + ky) + f(x - ky) = k(2)f(x + y) + k(2)f (x - y) + 2 (1 - k(2)) f (x) +((k(4) - k(2))/12 [f (2y) + f(-2y)-4f(-y)] for a fixed integer k with k not equal 0, +/- 1 in non- Archimedean normed spaces.
引用
收藏
页数:24
相关论文
共 33 条
[1]  
[Anonymous], B MALAYSIAN IN PRESS
[2]  
[Anonymous], INT J PHYS IN PRESS
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]   Functional inequalities in non-Archimedean Banach spaces [J].
Cho, Yeol Je ;
Park, Choonkil ;
Saadati, Reza .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1238-1242
[5]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[6]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[7]   Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces [J].
Gordji, M. Eshaghi ;
Savadkouhi, M. B. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1198-1202
[8]  
GORDJI ME, HYERS ULAM RASSIAS S
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Isac G., 1996, Int. J. Math. Math. Sci, V19, P219, DOI [10.1155/S0161171296000324, DOI 10.1155/S0161171296000324]