Donaldson-Thomas invariants and flops

被引:13
作者
Calabrese, John [1 ]
机构
[1] Univ Oxford, Math Inst, 24-29 St Giles, Oxford OX1 3LB, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 716卷
关键词
STABILITY CONDITIONS; ABELIAN CATEGORIES; CONFIGURATIONS; MODULI;
D O I
10.1515/crelle-2014-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a comparison formula for the Donaldson-Thomas curve-counting invariants of two smooth and projective Calabi-Yau threefolds related by a flop. By results of Bridgeland any two such varieties are derived equivalent. Furthermore there exist pairs of categories of perverse coherent sheaves on both sides which are swapped by this equivalence. Using the theory developed by Joyce we construct the motivic Hall algebras of these categories. These algebras provide a bridge relating the invariants on both sides of the flop.
引用
收藏
页码:103 / 145
页数:43
相关论文
共 33 条
[1]  
Abramovich D, 2006, J REINE ANGEW MATH, V590, P89
[2]  
Abramovich D, 2010, EMS SER CONGR REP, P1
[3]  
[Anonymous], 2000, ERGEB MATH GRENZGEB
[4]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[5]  
Bartocci C., 2009, Progr. Math., V276
[6]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[7]   Symmetric obstruction theories and Hilbert schemes of points on threefolds [J].
Behrend, Kai ;
Fantechi, Barbara .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :313-345
[8]  
Beligiannis A, 2007, MEM AM MATH SOC, V188, P1
[9]  
Berthelot P., 1971, Theorie des intersections et theoreme de Riemann-Roch, SGA, V225
[10]   Flops and derived categories [J].
Bridgeland, T .
INVENTIONES MATHEMATICAE, 2002, 147 (03) :613-632