Polynomial zerofinders based on Szego polynomials

被引:9
作者
Ammar, GS [1 ]
Calvetti, D
Gragg, WB
Reichel, L
机构
[1] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] USN, Postgrad Sch, Dept Math, Monterey, CA 93943 USA
[4] Kent State Univ, Dept Math & Comp Sci, Kent, OH 44242 USA
关键词
Szego-Hessenberg matrix; companion matrix; eigenvalue problem; continuation method; parallel computation;
D O I
10.1016/S0377-0427(00)00491-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The computation of zeros of polynomials is a classical computational problem. This paper presents two new zerofinders that are based on the observation that, after a suitable change of variable, any polynomial can be considered a member of a family of Szego polynomials. Numerical experiments indicate that these methods generally give higher accuracy than computing the eigenvalues of the companion matrix associated with the polynomial. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 30 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
AKHIEZER NI, 1965, CLASSICA MOMENT PROB
[3]  
Ammar G. S., 1986, Proceedings of the 25th IEEE Conference on Decision and Control (Cat. No.86CH2344-0), P1963
[4]  
AMMAR GS, 1994, ACM T MATH SOFTWARE, V20, P161, DOI 10.1145/174603.174406
[5]   AN IMPLEMENTATION OF A DIVIDE-AND-CONQUER ALGORITHM FOR THE UNITARY EIGENPROBLEM [J].
AMMAR, GS ;
REICHEL, L ;
SORENSEN, DC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (03) :292-307
[6]   Continuation methods for the computation of zeros of Szego polynomials [J].
Ammar, GS ;
Calvetti, D ;
Reichel, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 249 :125-155
[7]  
[Anonymous], 1974, APPL COMPUTATIONAL C
[8]  
[Anonymous], MATHWORKS NEWSLETTER
[9]   SCHUR PARAMETER PENCILS FOR THE SOLUTION OF THE UNITARY EIGENPROBLEM [J].
BUNSEGERSTNER, A ;
ELSNER, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 :741-778
[10]  
EDELMAN A, 1995, MATH COMPUT, V64, P763, DOI 10.1090/S0025-5718-1995-1262279-2