Analysis of negative capacitance and self-heating in organic semiconductor devices

被引:40
作者
Knapp, Evelyne [1 ]
Ruhstaller, Beat [1 ,2 ]
机构
[1] Zurich Univ Appl Sci, Inst Computat Phys, CH-8401 Winterthur, Switzerland
[2] Fluxim AG, CH-8406 Winterthur, Switzerland
基金
瑞士国家科学基金会;
关键词
LIGHT-EMITTING-DIODES; ELECTRON;
D O I
10.1063/1.4916981
中图分类号
O59 [应用物理学];
学科分类号
摘要
In admittance spectroscopy of organic semiconductor devices, negative capacitance values arise at low frequency and high voltages. This study aims at explaining the influence of self-heating on the frequency-dependent capacitance and demonstrates its impact on steady-state and dynamic experiments. Therefore, a one dimensional numerical drift-diffusion model extended by the heat equation is presented. We calculate the admittance with two approaches: a Fourier method that is applied to time domain data and a numerically efficient sinusoidal steady state analysis (S(3)A), which is based on the linearization of the equations around the operating point. The simulation results coincide well with the experimental findings from reference [H. Okumoto and T. Tsutsui, Appl. Phys. Express 7, 061601 (2014)] where the negative capacitance effect of an organic device becomes weaker with better cooling of the structure. Linking the frequency- and time-domain with the Fourier approach supports an effortless interpretation of the negative capacitance. Namely, we find that negative capacitance originates from self-heating induced current enhancement. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 25 条
[1]   An instrumental solution to the phenomenon of negative capacitances in semiconductors [J].
Butcher, KSA ;
Tansley, TL ;
Alexiev, D .
SOLID-STATE ELECTRONICS, 1996, 39 (03) :333-336
[2]   Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism [J].
Ehrenfreund, E. ;
Lungenschmied, C. ;
Dennler, G. ;
Neugebauer, H. ;
Sariciftci, N. S. .
APPLIED PHYSICS LETTERS, 2007, 91 (01)
[3]   Negative capacitance effect in semiconductor devices [J].
Ershov, M ;
Liu, HC ;
Li, L ;
Buchanan, M ;
Wasilewski, ZR ;
Jonscher, AK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (10) :2196-2206
[4]   Feel the Heat: Nonlinear Electrothermal Feedback in Organic LEDs [J].
Fischer, Axel ;
Koprucki, Thomas ;
Gaertner, Klaus ;
Tietze, Max L. ;
Brueckner, Jacqueline ;
Luessem, Bjoern ;
Leo, Karl ;
Glitzky, Annegret ;
Scholz, Reinhard .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (22) :3367-3374
[5]   Impedance of carrier injection at the metal-organic interface mediated by surface states in electron-only tris(8-hydroxyquinoline) aluminium (Alq3) thin layers [J].
Garcia-Belmonte, Germa ;
Bisquert, Juan ;
Bueno, Paulo R. ;
Graeff, C. F. O. .
CHEMICAL PHYSICS LETTERS, 2008, 455 (4-6) :242-248
[6]   Kinetics of interface state-limited hole injection in α-naphthylphenylbiphenyl diamine (α-NPD) thin layers [J].
Garcia-Belmonte, Germa ;
Bisquert, Juan ;
Bueno, Paulo R. ;
Graeff, C. F. O. ;
Castro, F. A. .
SYNTHETIC METALS, 2009, 159 (5-6) :480-486
[7]   Negative capacitances in low-mobility solids [J].
Gommans, HHP ;
Kemerink, M ;
Janssen, RAJ .
PHYSICAL REVIEW B, 2005, 72 (23)
[8]  
Harkema S., 2009, P SPIE, V7415
[9]   Effect of dye doping on the charge carrier balance in PPV light emitting diodes as measured by admittance spectroscopy [J].
Hulea, IN ;
van der Scheer, RFJ ;
Brom, HB ;
Langeveld-Voss, BMW ;
van Dijken, A ;
Brunner, K .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1246-1248
[10]   Numerical simulation of charge transport in disordered organic semiconductor devices [J].
Knapp, E. ;
Haeusermann, R. ;
Schwarzenbach, H. U. ;
Ruhstaller, B. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (05)