Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET

被引:19
作者
Aiba, N. [1 ,74 ]
Giroud, C. [2 ,12 ]
Honda, M. [3 ]
Delabie, E. [4 ,78 ]
Saarelma, S. [2 ,12 ]
Frassinetti, L. [5 ,47 ]
Lupelli, I. [2 ,12 ]
Casson, F. J. [2 ,12 ]
Pamela, S. [2 ,12 ]
Urano, H. [3 ,74 ]
Maggi, C. F. [2 ]
Abduallev, S. [44 ]
Abhangi, M. [51 ]
Abreu, P. [58 ]
Afzal, M. [12 ]
Aggarwal, K. M. [34 ]
Ahlgren, T. [106 ]
Ahn, J. H. [13 ]
Aho-Mantila, L. [116 ]
Aiba, N. [1 ,74 ]
Airila, M. [116 ]
Albanese, R. [109 ]
Aldred, V. [12 ]
Alegre, D. [98 ]
Alessi, E. [50 ]
Aleynikov, P. [60 ]
Alfier, A. [17 ]
Alkseev, A. [77 ]
Allinson, M. [12 ]
Alper, B. [12 ]
Alves, E. [58 ]
Ambrosino, G. [109 ]
Ambrosino, R. [110 ]
Amicucci, L. [95 ]
Amosov, V. [93 ]
Sunden, E. Andersson [27 ]
Angelone, M. [95 ]
Anghel, M. [90 ]
Angioni, C. [67 ]
Appel, L. [12 ]
Appelbee, C. [12 ]
Arena, P. [35 ]
Ariola, M. [110 ]
Arnichand, H. [13 ]
Arshad, S. [46 ]
Ash, A. [12 ]
Ashikawa, N. [73 ]
Aslanyan, V. [69 ]
Asunta, O. [6 ]
Auriemma, F. [17 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol, Rokkasho, Aomori 0393212, Japan
[2] Culham Ctr Fus Energy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[5] KTH, Div Fus Plasma Phys, SE-10041 Stockholm, Sweden
[6] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[7] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[8] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[9] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[10] Arizona State Univ, Tempe, AZ USA
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[13] CEA, IRFM, F-13108 St Paul Les Durance, France
[14] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[15] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[16] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[17] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[18] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[19] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[20] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[21] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[22] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[23] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[24] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[25] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[26] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[27] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[28] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[29] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[30] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[31] Univ Basel, Dept Phys, Basel, Switzerland
[32] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[33] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[34] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[35] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[36] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[37] Dublin City Univ, Dublin, Ireland
[38] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[39] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[40] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[41] European Commiss, B-1049 Brussels, Belgium
[42] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[43] FOM Inst DIFFER, Eindhoven, Netherlands
[44] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[45] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[46] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[47] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
[48] Gen Atom, POB 85608, San Diego, CA 92186 USA
[49] HRS Fusion, W Orange, NJ USA
[50] IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy
关键词
edge localized mode; extended MHD model; plasma rotation; tokamak plasma; BOOTSTRAP CURRENT; ARBITRARY COLLISIONALITY; EQUILIBRIA; TRANSPORT; INSTABILITIES; CONFINEMENT; PEDESTAL;
D O I
10.1088/1741-4326/aa8178
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Impact of ion diamagnetic drift on MHD stability at edge pedestal in JT-60U rotating plasmas [J].
Aiba, N. ;
Honda, M. ;
Kamiya, K. .
NUCLEAR FUSION, 2017, 57 (02)
[2]   Impact of ion diamagnetic drift on ideal ballooning mode stability in rotating tokamak plasmas [J].
Aiba, N. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
[3]   Numerical analysis of key factors for the appearance of grassy ELMs in tokamak plasmas [J].
Aiba, N. ;
Oyama, N. .
NUCLEAR FUSION, 2012, 52 (11)
[4]   Mechanisms of plasma rotation effects on the stability of type-I edge-localized mode in tokamaks [J].
Aiba, N. ;
Furukawa, M. ;
Hirota, M. ;
Oyama, N. ;
Kojima, A. ;
Tokuda, S. ;
Yagi, M. .
NUCLEAR FUSION, 2011, 51 (07)
[5]   Destabilization mechanism of edge localized MHD mode by a toroidal rotation in tokamaks [J].
Aiba, N. ;
Furukawa, M. ;
Hirota, M. ;
Tokuda, S. .
NUCLEAR FUSION, 2010, 50 (04)
[6]   MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas [J].
Aiba, N. ;
Tokuda, S. ;
Furukawa, M. ;
Snyder, P. B. ;
Chu, M. S. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (08) :1282-1304
[7]   FINESSE:: Axisymmetric MHD equilibria with flow [J].
Beliën, AJC ;
Botchev, MA ;
Goedbloed, JP ;
van der Holst, B ;
Keppens, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (01) :91-117
[8]   Full linearized Fokker-Planck collisions in neoclassical transport simulations [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
[9]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[10]   In situ wavelength calibration of the edge CXS spectrometers on JET [J].
Delabie, E. ;
Hawkes, N. ;
Biewer, T. M. ;
O'Mullane, M. G. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. ;
Bachmann, C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)