A continuum model for two-dimensional fiber networks

被引:0
|
作者
Baesu, E [1 ]
Zheng, MR [1 ]
Beljic, D [1 ]
机构
[1] Univ Nebraska, Dept Engn Mech, Lincoln, NE 68588 USA
关键词
D O I
暂无
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Elastic-plastic deformation of a continuum formed by continuously distributed fibers is described. Applications to the mechanical characterization of nanofibers, and to biological materials such as cellular cytoskeleton and tissue scaffolds are indicated.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 50 条
  • [1] THE MODEL OF TWO-DIMENSIONAL POLARIZABLE CONTINUUM
    TAKTAROV, NG
    DOKLADY AKADEMII NAUK SSSR, 1987, 292 (02): : 288 - 291
  • [2] A CONTINUUM MODEL FOR TWO-DIMENSIONAL DISLOCATION DISTRIBUTIONS
    HEAD, AK
    HOWISON, SD
    OCKENDON, JR
    TITCHENER, JB
    WILMOTT, P
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 55 (05): : 617 - 629
  • [3] TWO-DIMENSIONAL MODEL NETWORKS
    REHAGE, H
    VEYSSIE, M
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1985, 89 (11): : 1166 - 1171
  • [4] Two-Dimensional Continuum Map of Filamentous Random Networks
    Hatami-Marbini, H.
    Picu, R. C.
    2009 35TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2009, : 181 - 182
  • [5] A nonlocal continuum model for the piezopotential of two-dimensional semiconductors
    Zhang, Jin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (04)
  • [6] Continuum model of two-dimensional crystal lattice of metamaterials
    Zhou, Yahong
    Wei, Peijun
    Li, Yueqiu
    Li, Li
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (03) : 224 - 237
  • [7] A continuum model for periodic two-dimensional block structures
    Sulem, J
    Muhlhaus, HB
    MECHANICS OF COHESIVE-FRICTIONAL MATERIALS, 1997, 2 (01) : 31 - 46
  • [8] CLUSTERING IN THE TWO-DIMENSIONAL CONTINUUM SITE PERCOLATION MODEL
    EDGAL, UF
    WILEY, JD
    CRYSTAL LATTICE DEFECTS AND AMORPHOUS MATERIALS, 1987, 17 (03): : 241 - 247
  • [9] THE TWO-DIMENSIONAL CONTINUUM RANDOM FIELD ISING MODEL
    Bowditch, Adam
    Sun, Rongfeng
    ANNALS OF PROBABILITY, 2022, 50 (02): : 419 - 454
  • [10] Dipole formation and yielding in a two-dimensional continuum dislocation model
    Dickel, D.
    Schulz, K.
    Schmitt, S.
    Gumbsch, P.
    PHYSICAL REVIEW B, 2014, 90 (09):