Evidence for a quantum spin Hall phase in graphene decorated with Bi2Te3 nanoparticles

被引:41
作者
Hatsuda, K. [1 ]
Mine, H. [1 ]
Nakamura, T. [2 ]
Li, J. [3 ]
Wu, R. [3 ]
Katsumoto, S. [2 ]
Haruyama, J. [1 ,2 ]
机构
[1] Aoyama Gakuin Univ, Fac Sci & Engn, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan
[2] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 11期
关键词
TOTAL-ENERGY CALCULATIONS; TRANSITION; TRANSPORT;
D O I
10.1126/sciadv.aau6915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Realization of the quantum spin Hall effect in graphene devices has remained an outstanding challenge dating back to the inception of the field of topological insulators. Graphene's exceptionally weak spin-orbit coupling-stemming from carbon's low mass-poses the primary obstacle. We experimentally and theoretically study artificially enhanced spin-orbit coupling in graphene via random decoration with dilute Bi2Te3 nanoparticles. Multiterminal resistance measurements suggest the presence of helical edge states characteristic of a quantum spin Hall phase; the magnetic field and temperature dependence of the resistance peaks, x-ray photoelectron spectra, scanning tunneling spectroscopy, and first-principles calculations further support this scenario. These observations highlight a pathway to spintronics and quantum information applications in graphene-based quantum spin Hall platforms.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
Allen MT, 2016, NAT PHYS, V12, P128, DOI [10.1038/nphys3534, 10.1038/NPHYS3534]
[2]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]  
Brüne C, 2012, NAT PHYS, V8, P485, DOI [10.1038/nphys2322, 10.1038/NPHYS2322]
[5]   Transport in indium-decorated graphene [J].
Chandni, U. ;
Henriksen, Erik A. ;
Eisenstein, J. P. .
PHYSICAL REVIEW B, 2015, 91 (24)
[6]   Robust Helical Edge Transport in Gated InAs/GaSb Bilayers [J].
Du, Lingjie ;
Knez, Ivan ;
Sullivan, Gerard ;
Du, Rui-Rui .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[7]   Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2009, 79 (16)
[8]   Quantum spin Hall effect in three dimensional materials:: Lattice computation of Z2 topological invariants and its application to Bi and Sb [J].
Fukui, Takahiro ;
Hatsugai, Yasuhiro .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (05)
[9]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[10]   Giant Topological Insulator Gap in Graphene with 5d Adatoms [J].
Hu, Jun ;
Alicea, Jason ;
Wu, Ruqian ;
Franz, Marcel .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)