Singular limits for 2-dimensional elliptic problem involving exponential nonlinearity with nonlinear gradient term

被引:6
作者
Baraket, Sami [1 ]
Ben Omrane, Ines [2 ]
Ouni, Taieb [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2011年 / 18卷 / 01期
关键词
Singular limits; Green's function; Nonlinear domain decomposition method; EMDEN-FOWLER EQUATION; BLOWING-UP SOLUTIONS; EXISTENCE;
D O I
10.1007/s00030-010-0084-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bounded open regular set Omega subset of R(2) and x(1), x(2), ... , x(m) is an element of Omega, we give a sufficient condition for the problem -div(a(u)del u) = rho(2) f(u) to have a positive weak solution u in Omega with u = 0 on partial derivative Omega, which is singular at each x(i) as the parameter rho tends to 0 and under suitable assumptions on exponential functions a(u) and f(u).
引用
收藏
页码:59 / 78
页数:20
相关论文
共 23 条
  • [1] [Anonymous], 1996, Adv. Differ. Equ.
  • [2] [Anonymous], CR ACAD SCI PARIS 1
  • [3] [Anonymous], DIFFERENTIAL INTEGRA
  • [4] Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
  • [5] BARAKET S, SINGULAR LIMITS 2 DI
  • [6] Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity
    Baraket, Sami
    Dammak, Makkia
    Ouni, Taieb
    Pacard, Frank
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06): : 875 - 895
  • [7] Singular limits in Liouville-type equations
    del Pino, M
    Kowalczyk, M
    Musso, M
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) : 47 - 81
  • [8] On the existence of blowing-up solutions for a mean field equation
    Esposito, P
    Grossi, M
    Pistoia, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02): : 227 - 257
  • [9] Asymptotic behaviour of large solutions of an elliptic quasilinear equation in a borderline case
    Giarrusso, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 777 - 782
  • [10] Giarrusso E, 2000, MATH NACHR, V213, P89, DOI 10.1002/(SICI)1522-2616(200005)213:1<89::AID-MANA89>3.0.CO