ConvNeXt-Based Fine-Grained Image Classification and Bilinear Attention Mechanism Model

被引:14
|
作者
Li, Zhiheng [1 ,2 ]
Gu, Tongcheng [2 ,3 ]
Li, Bing [2 ,3 ]
Xu, Wubin [2 ,3 ]
He, Xin [2 ,3 ]
Hui, Xiangyu [2 ,3 ]
机构
[1] Guangxi Liugong Machinery Co Ltd, Liuzhou 545006, Peoples R China
[2] Guangxi Sci & Technol Univ, Guangxi Earthmoving Machinery Collaborat Innovat, Liuzhou 545006, Peoples R China
[3] Guangxi Sci & Technol Univ, Coll Mech & Automot Engn, Liuzhou 545006, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 18期
关键词
deep learning; convolutional neural network; image classification; fine grained; attention mechanism;
D O I
10.3390/app12189016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This paper studies attention-related optimizations and innovations for the ConvNeXt network proposed in January 2022, providing a reference for subsequent researchers to optimize this network . Thus far, few studies have been conducted on fine-grained classification tasks for the latest convolutional neural network ConvNeXt, and no effective optimization method has been made available. To achieve more accurate fine-grained classification, this paper proposes two attention embedding methods based on ConvNeXt network and designs a new bilinear CBAM; simultaneously, a multiscale, multi-perspective and all-around attention framework is proposed, which is then applied in ConvNeXt. Experimental verification shows that the accuracy rate of the improved ConvNeXt for fine-grained image classification reaches 87.8%, 91.2%, and 93.2% on fine-grained classification datasets CUB-200-2011, Stanford Cars, and FGVC Aircraft, respectively, showing increases of 2.7%, 0.3% and 0.4%, respectively, compared to those of the original network without optimization, and increases of 3.7%, 8.0% and 2.0%, respectively, compared to those of the traditional BCNN. In addition, ablation experiments are set up to verify the effectiveness of the proposed attention framework.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism
    Yang, Guofeng
    He, Yong
    Yang, Yong
    Xu, Beibei
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [2] Bilinear Residual Attention Networks for Fine-Grained Image Classification
    Wang Yang
    Liu Libo
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [3] Attention Bilinear Pooling for Fine-Grained Classification
    Wang, Wenqian
    Zhang, Jun
    Wang, Fenglei
    SYMMETRY-BASEL, 2019, 11 (08):
  • [4] A Streamlined Attention Mechanism for Image Classification and Fine-Grained Visual Recognition
    Dakshayani Himabindu D.
    Praveen Kumar S.
    Dakshayani Himabindu, D. (dakshayanihimabindu_d@vnrvjiet.in), 1600, Brno University of Technology (27): : 59 - 67
  • [5] Summary of Fine-Grained Image Recognition Based on Attention Mechanism
    Yao, Ma
    Min, Zhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [6] Aggregate attention module for fine-grained image classification
    Wang, Xingmei
    Shi, Jiahao
    Fujita, Hamido
    Zhao, Yilin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8335 - 8345
  • [7] Adversarial erasing attention for fine-grained image classification
    Jinsheng Ji
    Linfeng Jiang
    Tao Zhang
    Weilin Zhong
    Huilin Xiong
    Multimedia Tools and Applications, 2021, 80 : 22867 - 22889
  • [8] Aggregate attention module for fine-grained image classification
    Xingmei Wang
    Jiahao Shi
    Hamido Fujita
    Yilin Zhao
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 8335 - 8345
  • [9] Adversarial erasing attention for fine-grained image classification
    Ji, Jinsheng
    Jiang, Linfeng
    Zhang, Tao
    Zhong, Weilin
    Xiong, Huilin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22867 - 22889
  • [10] A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution
    Wang, Sifeng
    Li, Shengxiang
    Li, Anran
    Dong, Zhaoan
    Li, Guangshun
    Yan, Chao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (03): : 1283 - 1293