共 1 条
Role of Aqueous-Phase Calcination in Synthesis of Ultra-Stable Dye-Embedded Fluorescent Nanoparticles for Cellular Probing
被引:3
|作者:
Rex, Rachel
[1
,2
]
Siddhanta, Soumik
[1
,3
,4
]
Barman, Ishan
[1
,3
]
机构:
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Johns Hopkins Univ, Dept Oncol Radiol & Radiol Sci, Baltimore, MD USA
[4] Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India
关键词:
Core-shell nanoparticles;
liquid calcination;
silica coating;
cellular imaging;
fluorescence enhancement;
MESOPOROUS SILICA NANOPARTICLES;
GOLD NANOPARTICLES;
ENHANCEMENT;
STABILITY;
DISTANCE;
SIZE;
MOLECULES;
D O I:
10.1177/00037028211027597
中图分类号:
TH7 [仪器、仪表];
学科分类号:
0804 ;
080401 ;
081102 ;
摘要:
Fluorescence imaging is a major driver of discovery in biology, and an invaluable asset in clinical diagnostics. To overcome quenching limitations of conventional fluorescent dyes and further improve intensity, nanoparticle-based constructs have been the subject of intense investigation, and within this realm, dye-doped silica-coated nanoparticles have garnered significant attention. Despite their growing popularity in research, fluorescent silica nanoparticles suffer from a significant flaw. The degradation of these nanoparticles in biological media by hydrolytic dissolution is underreported, leading to serious misinterpretations, and limiting their applicability for live cell and in vivo imaging. Here, the development of an ultra-stable, dye-embedded, silica-coated metal nanoparticle is reported, and its superior performance in long-term live cell imaging is demonstrated. While conventional dye-doped silica nanoparticles begin to degrade within an hour in aqueous media, by leveraging a modified liquid calcination process, this new construct is shown to be stable for at least 24 h. The stability of this metal-enhanced fluorescent probe in biologically relevant temperatures and media, and its demonstrated utility for cell imaging, paves the way for its future adoption in biomedical research.
引用
收藏
页码:1012 / 1021
页数:10
相关论文