Visualization and cellular hierarchy inference of single-cell data using SPADE

被引:84
作者
Anchang, Benedict [1 ]
Hart, Tom D. P. [1 ]
Bendall, Sean C. [2 ]
Qiu, Peng [3 ,4 ]
Bjornson, Zach [5 ]
Linderman, Michael [6 ]
Nolan, Garry P. [5 ]
Plevritis, Sylvia K. [1 ]
机构
[1] Stanford Univ, Ctr Canc Syst Biol, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[3] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30322 USA
[4] Emory Univ, Atlanta, GA 30322 USA
[5] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
[6] Stanford Univ, Comp Syst Lab, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
MASS CYTOMETRY; EXPRESSION;
D O I
10.1038/nprot.2016.066
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes similar to 5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.
引用
收藏
页码:1264 / 1279
页数:16
相关论文
共 31 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   RchyOptimyx: Cellular hierarchy optimization for flow cytometry [J].
Aghaeepour, Nima ;
Jalali, Adrin ;
O'Neill, Kieran ;
Chattopadhyay, Pratip K. ;
Roederer, Mario ;
Hoos, Holger H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2012, 81A (12) :1022-1030
[3]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[4]   CCAST: A Model-Based Gating Strategy to Isolate Homogeneous Subpopulations in a Heterogeneous Population of Single Cells [J].
Anchang, Benedict ;
Do, Mary T. ;
Zhao, Xi ;
Plevritis, Sylvia K. .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (07)
[5]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[6]   Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators [J].
Bodenmiller, Bernd ;
Zunder, Eli R. ;
Finck, Rachel ;
Chen, Tiffany J. ;
Savig, Erica S. ;
Bruggner, Robert V. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Sachs, Karen ;
Krutzik, Peter O. ;
Nolan, Garry P. .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :858-U89
[7]   GRAPH DRAWING BY FORCE-DIRECTED PLACEMENT [J].
FRUCHTERMAN, TMJ ;
REINGOLD, EM .
SOFTWARE-PRACTICE & EXPERIENCE, 1991, 21 (11) :1129-1164
[8]   AN ALGORITHM FOR DRAWING GENERAL UNDIRECTED GRAPHS [J].
KAMADA, T ;
KAWAI, S .
INFORMATION PROCESSING LETTERS, 1989, 31 (01) :7-15
[9]  
Kotecha Nikesh, 2010, Curr Protoc Cytom, VChapter 10, DOI 10.1002/0471142956.cy1017s53
[10]  
Levina E, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P251, DOI 10.1109/ICCV.2001.937632