Symmetry of Positive Solutions to Quasilinear Fractional Systems

被引:2
作者
Phuong Le [1 ,2 ]
机构
[1] Univ Econ & Law, Fac Econ Math, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 03期
关键词
quasilinear fractional system; fractional p-Laplacian; symmetry of solutions; P-LAPLACIAN; MAXIMUM-PRINCIPLES; MOVING PLANES; NONEXISTENCE; EQUATIONS; CLASSIFICATION; DIFFUSION; THEOREM;
D O I
10.11650/tjm/201203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the method of moving planes, we establish the radial symmetry of positive solutions to the fractional system {(-Delta)(p)(s)u = f(u, v), (-Delta)(q)(t)v = g(u, v) in the entire Euclidean space R-n and in the unit ball, where 0 < s, t < 1 and p, q >= 2. In particular, our result can be applied to the nonlinearities f (u, v) u(a)v(b) and g(u, v) u(c)v(d), where a, d is an element of R and b, c > 0.
引用
收藏
页码:517 / 534
页数:18
相关论文
共 28 条
[1]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[2]  
Bertoin J, 1996, Levy Processes, V121
[3]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[4]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[5]   Nonlocal Tug-of-War and the Infinity Fractional Laplacian [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (03) :337-380
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[9]   Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball [J].
Cao, Linfen ;
Wang, Xiaoshan ;
Dai, Zhaohui .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
[10]   Maximum principles for the fractional p-Laplacian and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2018, 335 :735-758