Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition

被引:380
作者
Zhao, Ruirui [1 ]
Wang, Haifeng [1 ]
Du, Haoran [1 ]
Yang, Ying [1 ]
Gao, Zhonghui [1 ]
Qie, Long [1 ,2 ]
Huang, Yunhui [2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Hubei, Peoples R China
关键词
SILICA PARTICLES; MICA SURFACES; LITHIUM METAL; FORCES; ADSORPTION; COPPER; DEPOSITION; STABILITY; KINETICS; GROWTH;
D O I
10.1038/s41467-022-30939-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the zinc metal deposition at the anode strongly influences the battery cycle life and performance. To circumvent this issue, here we propose the use of lanthanum nitrate (La(NO3)(3)) as supporting salt for aqueous zinc sulfate (ZnSO4) electrolyte solutions. Via physicochemical and electrochemical characterizations, we demonstrate that this peculiar electrolyte formulation weakens the electric double layer repulsive force, thus, favouring dense metallic zinc deposits and regulating the charge distribution at the zinc metal|electrolyte interface. When tested in Zn||VS2 full coin cell configuration (with cathode mass loading of 16 mg cm(-2)), the electrolyte solution containing the lanthanum ions enables almost 1000 cycles at 1 A g(-1) (after 5 activation cycles at 0.05 A g(-1)) with a stable discharge capacity of about 90 mAh g(-1) and an average cell discharge voltage of similar to 0.54 V. Zinc metal is a promising anode material for aqueous secondary batteries. However, the unfavourable morphologies formed on the electrode surface during cycling limit its application. Here, the authors report the tailoring of the surface morphology using a lanthanum nitrate aqueous electrolyte additive.
引用
收藏
页数:9
相关论文
共 52 条
[1]  
Bard A. J., 2001, ELECTROCHEMICAL METH, P566
[2]  
Bard A. J., 2001, ELECTROCHEMICAL METH, P552
[3]   Nucleation and Growth Mechanism of Ni/TiO2 Nanoparticles Electro-Codeposition [J].
Benea, Lidia ;
Danaila, Eliza .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) :D655-D662
[4]   Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Gu, Chao ;
Wang, Xiao ;
Wang, Shanmin ;
Zhang, Xinyu ;
Qin, Jiaqian ;
Wu, Zhong-Shuai .
ADVANCED ENERGY MATERIALS, 2021, 11 (29)
[5]   DLVO (DERJAGUIN-LANDAU-VERWEY-OVERBEEK) THEORY AND SOLVATION FORCES BETWEEN MICA SURFACES IN POLAR AND HYDROGEN-BONDING LIQUIDS [J].
CHRISTENSON, HK .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1984, 80 :1933-1946
[6]   Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells [J].
Dong, Yanhao ;
Zhang, Zhichao ;
Alvarez, Ana ;
Chen, I-Wei .
ACTA MATERIALIA, 2020, 199 :264-277
[7]   High-Capacity and Long-Life Zinc Electrodeposition Enabled by a Self-Healable and Desolvation Shield for Aqueous Zinc-Ion Batteries [J].
Du, Haoran ;
Zhao, Ruirui ;
Yang, Ying ;
Liu, Zhikang ;
Qie, Long ;
Huang, Yunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (10)
[8]   Development of the electrochemical performance of zinc via alloying with indium as anode for alkaline batteries application [J].
Elrouby, Mahmoud ;
Shilkamy, Hoda A. El-Shafy ;
Elsayed, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
[9]   Quantifying inactive lithium in lithium metal batteries [J].
Fang, Chengcheng ;
Li, Jinxing ;
Zhang, Minghao ;
Zhang, Yihui ;
Yang, Fan ;
Lee, Jungwoo Z. ;
Lee, Min-Han ;
Alvarado, Judith ;
Schroeder, Marshall A. ;
Yang, Yangyuchen ;
Lu, Bingyu ;
Williams, Nicholas ;
Ceja, Miguel ;
Yang, Li ;
Cai, Mei ;
Gu, Jing ;
Xu, Kang ;
Wang, Xuefeng ;
Meng, Ying Shirley .
NATURE, 2019, 572 (7770) :511-+
[10]  
Fu X., 2006, PHYS CHEM, P434