Marginal TT over line -like deformation and modified Maxwell theories in two dimensions

被引:40
作者
Babaei-Aghbolagh, H. [1 ]
Velni, Komeil Babaei [2 ]
Yekta, Davood Mahdavian [3 ]
Mohammadzadeh, H. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Phys, POB 179, Ardebil, Iran
[2] Univ Guilan, Dept Phys, POB 41335-1914, Rasht, Iran
[3] Hakim Sabzevari Univ, Dept Phys, POB 397, Sabzevar, Iran
关键词
D O I
10.1103/PhysRevD.106.086022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, the ModMax theory has been proposed as a unique conformal nonlinear extension of electrodynamic theories. We have shown in [H. Babaei-Aghbolagh et al., Phys. Lett. B 829, 137079 (2022).] that this modification can be reproduced by using a marginal TT over bar -like deformation from pure Maxwell theory. Further, it was shown that this deformation is solvable by applying a perturbative approach. In this paper, we will investigate a similar marginal TT over bar -like deformation for a general two-dimensional scalar field theory. It is shown that employing an irrelevant TT over bar operator on this marginal scalar theory will produce a generalized Nambu-Goto action of this scalar theory which is a Born-Infeld-like action in two dimensions. Using a similar prescription for a two-dimensional theory with multiple scalar fields, we show that the marginal TT over bar -like deformation yields a ModMax-like Lagrangian and then the irrelevant operator produces a generalized scalar ModMax action.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Aspects of holographic entanglement entropy for T(T)over-bar-deformed CFTs [J].
Allameh, Kuroush ;
Astaneh, Amin Faraji ;
Hassanzadeh, Alireza .
PHYSICS LETTERS B, 2022, 826
[2]  
Zamolodchikov AB, 2004, Arxiv, DOI [arXiv:hep-th/0401146, DOI 10.48550/ARXIV.HEP-TH/0401146, 10.48550/arXiv.hep-th/0401146]
[3]   Emergence of non-linear electrodynamic theories from T(T)over-bar-like deformations [J].
Babaei-Aghbolagh, H. ;
Velni, Komeil Babaei ;
Yekta, Davood Mahdavian ;
Mohammadzadeh, H. .
PHYSICS LETTERS B, 2022, 829
[4]  
Babaei-Aghbolagh H, 2021, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2021)187
[5]   Boosting to BMS [J].
Bagchi, Arjun ;
Banerjee, Aritra ;
Muraki, Hisayoshi .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
[6]   On p-form gauge theories and their conformal limits [J].
Bandos, Igor ;
Lechner, Kurt ;
Sorokin, Dmitri ;
Townsend, Paul K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
[7]   Nonlinear duality-invariant conformal extension of Maxwell's equations [J].
Bandos, Igor ;
Lechner, Kurt ;
Sorokin, Dmitri ;
Townsend, Paul K. .
PHYSICAL REVIEW D, 2020, 102 (12)
[8]  
Cavaglià A, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2016)112
[9]  
Conti R, 2022, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2022)085
[10]  
Conti R, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2018)007