Numerical modeling of the electrical breakdown and discharge properties of laser-generated plasma channels

被引:22
|
作者
Petrova, Tz. B. [1 ]
Ladouceur, H. D. [1 ]
Baronavski, A. P. [1 ]
机构
[1] USN, Res Lab, Div Chem, Mol Dynam Sect, Washington, DC 20375 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 06期
关键词
D O I
10.1103/PhysRevE.76.066405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An extensive nonequilibrium steady-state kinetics model incorporating collisional and radiative processes is developed to study the electrical breakdown and discharge maintenance of laser-induced atmospheric plasma channels formed in externally applied electric fields. The model is based upon a self-consistent numerical solution of the Boltzmann equation for the electron energy distribution function coupled with the electron energy balance equation and the population balance equations for electrons and air species. Using the electron energy distribution function, the ionization and electron attachment rates as a function of the reduced applied electric field at different degrees of ionization are calculated. We find that the ionization rate as a function of applied electric field in a laser-induced plasma channel is orders of magnitude larger than that obtained for a natural atmospheric air discharge. Therefore, the electrical breakdown of these plasma channels may occur at significantly lower applied electric fields. The present model predicts a breakdown electric field of 10 kV/cm, while the experimentally determined breakdown field strength is similar to 5.7 kV/cm [A. P. Baronavski , NRL Memorandum Report No. NRL/MR/6110-02-8642, 2002 (unpublished)], a reduction of about a factor of 5 from the natural Paschen electrical breakdown field of similar to 30 kV/cm.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Harmonic filtering in an optically thin laser-generated plasma
    Jarque, EC
    Plaja, L
    PHYSICAL REVIEW E, 1998, 58 (06) : 7864 - 7867
  • [42] Wavefront shaping optics for laser-generated plasma heating
    Powell, AK
    Laczik, Z
    Pfauntsch, SJ
    Chana, DS
    Michette, AG
    JOURNAL DE PHYSIQUE IV, 2003, 104 : 127 - 130
  • [43] Energy loss of argon in a laser-generated carbon plasma
    Frank, A.
    Blazevic, A.
    Grande, P. L.
    Harres, K.
    Hessling, T.
    Hoffmann, D. H. H.
    Knobloch-Maas, R.
    Kuznetsov, P. G.
    Nuernberg, F.
    Pelka, A.
    Schaumann, G.
    Schiwietz, G.
    Schoekel, A.
    Schollmeier, M.
    Schumacher, D.
    Schuetrumpf, J.
    Vatulin, V. V.
    Vinokurov, O. A.
    Roth, M.
    PHYSICAL REVIEW E, 2010, 81 (02):
  • [44] Laser-generated plasma investigation by electrostatic quadrupole analyzer
    Caridi, F.
    Torrisi, L.
    Margarone, D.
    Borrielli, A.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2008, 163 (4-6): : 357 - 363
  • [45] Nonlinear inverse bremsstrahlung absorption of laser-generated plasma
    Qiang, Xiwen
    Zhu, Runhe
    2000, Chongqing Inst of Optics and Mechanics, China (21):
  • [46] ENERGY SPECTRUM OF IONS IN A LASER-GENERATED ALUMINUM PLASMA
    BRIAND, P
    CONSOLI, T
    SLAMA, L
    GRELOT, P
    PHYSICS LETTERS A, 1967, A 25 (08) : 631 - &
  • [47] Laser-generated Cu plasma in vacuum and in nitrogen gas
    Torrisi, L.
    Cutroneo, M.
    Torrisi, A.
    VACUUM, 2020, 178 (178)
  • [48] Laser-generated plasma by carbon nanoparticles embedded into polyethylene
    Torrisi, L.
    Ceccio, G.
    Cutroneo, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 375 : 93 - 99
  • [49] Fast switching with laser-generated continuous plasma columns
    Polonskiy, LY
    Goltsov, AY
    Morozov, AV
    PHYSICS OF PLASMAS, 1996, 3 (07) : 2781 - 2787
  • [50] Neutron production in picosecond laser-generated plasma on a be target
    V. S. Belyaev
    V. I. Vinogradov
    A. P. Matafonov
    V. P. Krainov
    V. S. Lisitsa
    A. Ya. Faenov
    V. P. Andrianov
    G. N. Ignatiev
    Yu. I. Kozhunov
    O. B. Kozlov
    Physics of Atomic Nuclei, 2006, 69 : 919 - 923