Finite element modeling and analysis of piezoelectric nanoporous metal foam nanobeam under hygro and nonlinear thermal field

被引:7
作者
Selvamani, Rajendran [1 ]
Rexy, John Britto [1 ]
Ebrahimi, Farzad [2 ]
机构
[1] Karunya Inst Technol & Sci, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] Imam Khomieni Int Univ, Dept Mech Engn, Qazvin, Iran
关键词
VIBRATION ANALYSIS; POROUS NANOBEAMS; BEHAVIOR; BEAM; MECHANICS;
D O I
10.1007/s00707-022-03263-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present article studies the finite element modeling of wave propagation characteristics in a nonlinear thermal piezoelectric hygroscopic nanoporous metal foam nanobeam. The symmetry 1, symmetry 2, and uniform type of nanoporosity patterns are employed in this study. The controlling equation of motion is derived via a modified trigonometric beam model in higher order. The effect of a piezo electric field is incorporated with the governing equations by convoluting field quantities and displacement components. The Rayleigh-Ritz finite element method is adopted to observe the dynamic response of the nanobeam. Comparison studies are performed to display the accuracy and efficiency of this analytical model. Further, the effects of piezoelectric strain, porosity coefficient, moisture concentration, slenderness ratio, and thickness to diameter ratio on the critical buckling load of metal foam nanobeams are thoroughly investigated and highlighted by Tables and dispersion curves.
引用
收藏
页码:3113 / 3132
页数:20
相关论文
共 50 条
[31]   Invariant-based formulation of a triangular finite element for geometrically nonlinear thermal analysis of composite shells [J].
Levyakov, S. V. ;
Kuznetsov, V. V. .
COMPOSITE STRUCTURES, 2017, 177 :38-53
[32]   Nonlinear finite element modeling and vibration analysis of the blisk deposited strain-dependent hard coating [J].
Gao, Feng ;
Sun, Wei .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 121 (124-143) :124-143
[33]   Finite Element Modeling and Nonlinear Analysis on the Optimum Opening Location for Continuous Composite Beams with Web Openings [J].
Li, Longqi ;
Liao, Wenyuan ;
Huo, Bingyong .
TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2021, 28 (03) :891-897
[34]   Three-field mixed beam-column finite element for geometric and material nonlinear analysis [J].
Ferreira, Miguel ;
Providencia, Paulo ;
Costa, Ricardo ;
Gala, Pedro ;
Almeida, Joao .
STRUCTURAL ENGINEERING AND MECHANICS, 2021, 79 (02) :211-222
[35]   Nonlinear finite element analysis of partially encased composite columns under non-uniform moments [J].
Benedito, Andre Vitor ;
Milani, Margot Fabiana Pereira ;
Krahl, Pablo Augusto ;
Marques, Bruno Bianchi ;
De Nardin, Silvana ;
Martins, Carlos Humberto .
STRUCTURES, 2023, 58
[36]   Nonlinear Finite-Element Analysis of RC Bridge Columns under Torsion with and without Axial Compression [J].
Mondal, Tarutal Ghosh ;
Prakash, S. Suriya .
JOURNAL OF BRIDGE ENGINEERING, 2016, 21 (02)
[37]   Thermal analysis of fused deposition modeling process based finite element method: Simulation and parametric study [J].
Khanafer, Khalil ;
Al-Masri, Ali ;
Deiab, Ibrahim ;
Vafai, Kambiz .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2022, 81 (3-6) :94-118
[38]   Nonlinear finite element and machine learning modeling of tubed reinforced concrete columns under eccentric axial compression loading [J].
Isleem, Haytham F. ;
Chukka, Naga Dheeraj Kumar Reddy ;
Bahrami, Alireza ;
Kumar, Rakesh ;
Sor, Nadhim Hamah .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 92 :380-416
[39]   Failure analysis of metal-polymer-metal sandwich panels with wire mesh interlayers: Finite element modeling and experimental validation [J].
Naik, R. K. ;
Panda, S. K. ;
Racherla, V. .
COMPOSITE STRUCTURES, 2022, 280
[40]   Thermal effects on nonlinear vibration of a carbon nanotube-based mass sensor using finite element analysis [J].
Kang, Dong-Keun ;
Kim, Chang-Wan ;
Yang, Hyun-Ik .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 85 :125-136