From forcing to satisfaction in Kripke models of intuitionistic predicate logic

被引:2
作者
Abiri, Maryam [1 ]
Moniri, Morteza [1 ]
Zaare, Mostafa [2 ]
机构
[1] Shahid Beheshti Univ, Dept Math, GC, Tehran, Iran
[2] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Kripke model; intuitionistic predicate logic; forcing; satisfiability; SUBMODELS;
D O I
10.1093/jigpal/jzy007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we answer a natural question concerning the relation between forcing and satisfaction in Kripke models of intuitionistic predicate logic. We define a class of formulas denoted by R*, with the property that forcing of any R*-formula in a node of a Kripke model of intuitionistic predicate logic implies its satisfaction in the classical structure attached to that node. We also prove that any formula with this property is an R*-formula.
引用
收藏
页码:464 / 474
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 2004, LOGIC STRUCTURE, DOI DOI 10.1007/978-3-540-85108-0
[2]   INTUITIONISTIC VALIDITY IN T-NORMAL KRIPKE STRUCTURES [J].
BUSS, SR .
ANNALS OF PURE AND APPLIED LOGIC, 1993, 59 (03) :159-173
[3]   Kripke submodels and universal sentences [J].
Ellison, Ben ;
Fleischmann, Jonathan ;
McGinn, Dan ;
Ruitenburg, Wim .
MATHEMATICAL LOGIC QUARTERLY, 2007, 53 (03) :311-320
[4]  
Markovic Z., 1998, I MATH, V13, P1
[5]  
MARKOVIC Z, 1983, NOTRE DAME J FORM L, V24, P395
[6]   Independence results for weak systems of intuitionistic arithmetic [J].
Moniri, M .
MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (03) :250-254
[7]  
van Dalen D., 1986, Notre Dame Journal of Formal Logic, V27, P528, DOI 10.1305/ndjfl/1093636765
[8]   Submodels of Kripke models [J].
Visser, A .
ARCHIVE FOR MATHEMATICAL LOGIC, 2001, 40 (04) :277-295
[9]  
Wehmeier KF., 1996, Notre Dame J. Formal Logic, V37, P452, DOI [10.1305/ndjfl/1039886521, DOI 10.1305/NDJFL/1039886521]