On the Numerical Analysis of a Nonlinear Fractional Schrodinger Equation with Neumann Boundary Condition

被引:0
作者
Hicdurmaz, Betul [1 ]
机构
[1] Istanbul Medeniyet Univ, Fac Engn & Nat Sci, Dept Math, TR-34700 Istanbul, Turkey
来源
THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019) | 2019年 / 2183卷
关键词
Fractional derivative; Convergence; Neumann boundary condition;
D O I
10.1063/1.5136184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, a nonlinear fractional Schrodinger equation is investigated with a numerical approach. First and second orders of accuracy difference schemes are constructed for a mixed problem for a nonlinear fractional Schrodinger equation with Neumann boundary condition. Results of numerical experiments support the convergence of solutions of constructed first and second order of accuracy difference schemes to exact solution of the problem.
引用
收藏
页数:4
相关论文
共 50 条
[31]   A nonlinear elliptic eigenvalue-transmission problem with Neumann boundary condition [J].
Barbu, Luminita ;
Morosanu, Gheorghe ;
Pintea, Cornel .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) :821-836
[32]   A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions [J].
Huang, Jianfei ;
Tang, Yifa ;
Wang, Wenjia ;
Yang, Jiye .
ASIASIM 2012, PT I, 2012, 323 :273-+
[33]   Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition [J].
M. B. Benboubker ;
E. Nassouri ;
S. Ouaro ;
U. Traoré .
Advances in Operator Theory, 2020, 5 :1480-1497
[34]   On Solving the Singular System Arisen from Poisson Equation with Neumann Boundary Condition [J].
Myoungho Yoon ;
Gangjoon Yoon ;
Chohong Min .
Journal of Scientific Computing, 2016, 69 :391-405
[35]   The study on the Solution to the Generalized Hyperelastic-Rod Equation with Neumann Boundary Condition [J].
Ding, Danping ;
Liu, Xinlin ;
Chen, Chen .
2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, :1791-1793
[36]   On Solving the Singular System Arisen from Poisson Equation with Neumann Boundary Condition [J].
Yoon, Myoungho ;
Yoon, Gangjoon ;
Min, Chohong .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (01) :391-405
[37]   Nonexistence for the Laplace equation with a dynamical boundary condition of fractional type [J].
Kirane, M. ;
Tatar, N. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (05) :849-856
[38]   Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition [J].
Benboubker, M. B. ;
Nassouri, E. ;
Ouaro, S. ;
Traore, U. .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1480-1497
[39]   Nonexistence for the Laplace equation with a dynamical boundary condition of fractional type [J].
Mokhtar Kirane ;
Nasser-Eddine Tatar .
Siberian Mathematical Journal, 2007, 48 :849-856
[40]   A note on parabolic equation with nonlinear dynamical boundary condition [J].
Sprekels, Juergen ;
Wu, Hao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :3028-3048