On the Thermodynamics and Experimental Control of Twinning in Metal Nanocrystals

被引:20
作者
Gilroy, Kyle D. [1 ,2 ]
Puibasset, Joel [3 ,4 ]
Vara, Madeline [5 ]
Xia, Younan [1 ,2 ,5 ,6 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] CNRS, UMR 7374, ICMN, 1b Rue Ferollerie, F-45071 Orleans 02, France
[4] Univ Orleans, 1b Rue Ferollerie, F-45071 Orleans 02, France
[5] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
nanocrystal; silver; twin defect; COLLOIDAL METAL; SHAPE CONTROL; GOLD NANOPARTICLES; SURFACE-CHEMISTRY; OXYGEN REDUCTION; POLYOL SYNTHESIS; SEEDED GROWTH; SILVER; SILICA; SIZE;
D O I
10.1002/anie.201705443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work demonstrates a new strategy for controlling the evolution of twin defects in metal nanocrystals by simply following thermodynamic principles. With Ag nanocrystals supported on amorphous SiO2 as a typical example, we establish that twin defects can be rationally generated by equilibrating nanoparticles of different sizes through heating and then cooling. We validate that Ag nanocrystals with icosahedral, decahedral, and single-crystal structures are favored at sizes below 7 nm, between 7 and 11 nm, and greater than 11 nm, respectively. This trend is then rationalized by computational studies based on density functional theory and molecular dynamics, which show that the excess free energy for the three equilibrium structures correlate strongly with particle size. This work not only highlights the importance of thermodynamic control but also adds another synthetic method to the ever-expanding toolbox used for generating metal nanocrystals with desired properties.
引用
收藏
页码:8647 / 8651
页数:5
相关论文
共 38 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]  
[Anonymous], 2017, ANGEW CHEM, V129, P3648
[3]  
[Anonymous], 2006, ANGEW CHEM, V118, P2963
[4]  
[Anonymous], 2017, Angew. Chem, V129, P60
[5]   Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects [J].
Baletto, F ;
Ferrando, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :371-423
[6]   Nanogold: A Quantitative Phase Map [J].
Barnard, Amanda S. ;
Young, Neil P. ;
Kirkland, Angus I. ;
van Huis, Marijn A. ;
Xu, Huifang .
ACS NANO, 2009, 3 (06) :1431-1436
[7]   The Solvent Matters: Kinetic versus Thermodynamic Shape Control in the Polyol Synthesis of Rhodium Nanoparticles [J].
Biacchi, Adam J. ;
Schaak, Raymond E. .
ACS NANO, 2011, 5 (10) :8089-8099
[8]  
Callister W.D., 2013, Materials Science and Engineering: An Introduction, V7th, P207
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]  
Gilroy K. D., NANO LETT