On minimal absolutely pure domain of RD-fllat modules

被引:0
作者
Alagoz, Yusuf [1 ]
机构
[1] Siirt Univ, Fac Sci, Dept Math, Siirt, Turkey
关键词
RD-flat modules; absolutely pure domains; rd-indigent modules; QF-rings; ALTERNATIVE PERSPECTIVE; TORSION-FREE; RINGS; PURITY;
D O I
10.55730/1300-0098.3269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given modules A(R) and B-R, B-R is called absolutely A(R)-pure if for every extension C-R of B-R, A circle times B -> A circle times C is a monomorphism. The class (Fl) under bar (-1)(A(R)) ={B-R : B-R is absolutely A(R)-pure} is called the absolutely pure domain of a module A(R). If B-R is divisible, then all short exact sequences starting with B is RD-pure, whence B is absolutey A-pure for every RD-flat module A(R). Thus the class of divisible modules is the smallest possible absolutely pure domain of an RD-flat module. In this paper, we consider RD-flat modules whose absolutely pure domains contain only divisible modules, and we referred to these RD-flat modules as rd-indigent. Properties of absolutely pure domains of RD-flat modules and of rd-indigent modules are studied. We prove that every ring has an rd-indigent module, and characterize rd-indigent abelian groups. Furthermore, over (commutative) SRDP rings, we give some characterizations of the rings whose nonprojective simple modules are rd-indigent.
引用
收藏
页码:2292 / 2303
页数:13
相关论文
共 26 条
[1]   Max-projective modules [J].
Alagoz, Yusuf ;
Buyukasik, Engin .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (06)
[2]   POOR MODULES: THE OPPOSITE OF INJECTIVITY [J].
Alahmadi, Adel N. ;
Alkan, Mustafa ;
Lopez-Permouth, Sergio .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52A :7-17
[3]   Torsion-freeness and non-singularity over right p.p.-rings [J].
Albrecht, U ;
Dauns, J ;
Fuchs, L .
JOURNAL OF ALGEBRA, 2005, 285 (01) :98-119
[4]   An alternative perspective on injectivity of modules [J].
Aydogdu, Pinar ;
Lopez-Permouth, Sergio R. .
JOURNAL OF ALGEBRA, 2011, 338 (01) :207-219
[5]   C-PURE PROJECTIVE MODULES [J].
Behboodi, M. ;
Ghorbani, A. ;
Moradzadeh-Dehkordi, A. ;
Shojaee, S. H. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) :4559-4575
[6]  
Chatters A.W., 1980, RINGS CHAIN CONDITIO, V44
[7]  
Clark J, 2006, FRONT MATH, P1
[8]   RD-flatness and RD-injectivity [J].
Couchot, Francois .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) :3675-3689
[9]   A CRITERION FOR RINGS WHICH ARE LOCALLY VALUATION RINGS [J].
Divaani-Aazar, Kamran ;
Esmkhani, Mohammad Ali ;
Tousi, Massoud .
COLLOQUIUM MATHEMATICUM, 2009, 116 (02) :153-164
[10]  
Dung N. V., 1994, PITMAN RES NOTES MAT