Robust Kalman filter design for continuous-time systems with Markovian jumping parameters

被引:0
作者
Lee, CM [1 ]
Fong, IK [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan
来源
Proceedings of the Sixth IASTED International Conference on Signal and Image Processing | 2004年
关键词
Markovian; Kalman filter; algebraic Riccati equations; LMI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the robust Kalman filtering problem for uncertain continuous-time linear systems with Markovian jumping parameters is addressed. The uncertainties are formulated by linear fractional transformation. After the system stochastic stability is defined, a state estimator design method is developed so that the covariance of estimation error is bounded above. A solution method involving, a set of coupled Riccati equations is proposed, and then converted into an optimization procedure based on linear matrix inequality.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 14 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
[Anonymous], 1999, SPRINGER SERIES INFO
[3]  
DESOUZA EC, 1996, P 35 IEEE C DEC CONT, P4814
[4]   Control of singularly perturbed systems with Markovian jump parameters:: an H∞ approach [J].
Dragan, V ;
Shi, P ;
Boukas, EK .
AUTOMATICA, 1999, 35 (08) :1369-1378
[5]   THE FILTERING PROBLEM FOR CONTINUOUS-TIME LINEAR-SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
DUFOUR, F ;
BERTRAND, P .
SYSTEMS & CONTROL LETTERS, 1994, 23 (06) :453-461
[6]   STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS [J].
FENG, XB ;
LOPARO, KA ;
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :38-53
[7]  
Gahinet P., 1995, LMI Control Toolbox
[8]  
KANDIL HA, 1994, IEEE T AUTOMAT CONTR, V39, P1631
[9]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[10]   ROBUST MINIMUM-VARIANCE FILTERING [J].
SHAKED, U ;
DESOUZA, CE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) :2474-2483