Limit theorems for random walks

被引:9
作者
Bendikov, Alexander [1 ]
Cygan, Wojciech [1 ]
Trojan, Bartosz [2 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Wroclaw Univ Technol, Wydzial Matemat, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
基金
奥地利科学基金会;
关键词
Asymptotic formula; Random walk; Regular variation; Subordination; Strong ratio limit theorem; Functional limit theorem;
D O I
10.1016/j.spa.2017.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a random walk S-tau which is obtained from the simple random walk S by a discrete time version of Bochner's subordination. We prove that under certain conditions on the subordinator tau appropriately scaled random walk S-tau converges in the Skorohod space to the symmetric alpha-stable process B-alpha We also prove asymptotic formula for the transition function of S-tau similar to the Polya's asymptotic formula for B-alpha. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3268 / 3290
页数:23
相关论文
共 22 条
[1]  
Alexopoulos GK, 2002, ANN PROBAB, V30, P723
[2]  
[Anonymous], 1988, TAUBERIAN THEOREMS G
[3]   Random walks on groups and discrete subordination [J].
Bendikov, A. ;
Saloff-Coste, L. .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) :580-605
[4]  
BENDIKOV A, 1994, EXPO MATH, V12, P381
[5]   α-STABLE RANDOM WALK HAS MASSIVE THORNS [J].
Bendikov, Alexander ;
Cygan, Wojciech .
COLLOQUIUM MATHEMATICUM, 2015, 138 (01) :105-129
[6]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[7]  
Bingham N. H., 1989, Encyclopedia of Mathematics and its Applications
[8]  
Blumenthal RM., 1960, T AM MATH SOC, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[10]  
Doney A.R., 1997, PROBAB THEORY REL, V4, P451