Lupas-Kantorovich Type Operators for Functions of Two Variables

被引:0
作者
Agrawal, P. N. [1 ]
Kumar, Abhishek [1 ]
机构
[1] IIT Roorkee, Dept Math, Roorkee, Uttar Pradesh, India
来源
MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018 | 2020年 / 306卷
关键词
Peetre's K-functional; Bogel continuous; Bogel differentiable; Mixed modulus of smoothness; APPROXIMATION;
D O I
10.1007/978-981-15-1153-0_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Agratini [1] introduced the Lupas-Kantorovich type operators. Manav and Ispir [18] defined a Durrmeyer variant of the operators proposed by Lupas and studied some of their approximation properties. Later, they [17] considered the bivariate case of these operators and studied the degree of approximation by means of the complete and partial moduli of continuity and the order of convergence by using Peetre's K-functional. The associated GBS (Generalized Boolean Sum) operators were also investigated in the same paper. Our goal is to define the bivariate Chlodowsky Lupas-Kantorovich type operators and study their degree of approximation. We also introduce the associated GBS operators and investigate the rate of convergence of these operators for Bogel continuous and Bogel differentiable functions with the aid of mixed modulus of smoothness.
引用
收藏
页码:17 / 36
页数:20
相关论文
共 50 条
  • [31] Linking of Bernstein-Chlodowsky and Szasz-Appell-Kantorovich type operators
    Agrawal, P. N.
    Kumar, Dharmendra
    Araci, Serkan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3288 - 3302
  • [32] Modified Szasz-Mirakjan-Kantorovich Operators Preserving Linear Functions
    Duman, Oktay
    Ozarslan, Mehmet Ali
    Della Vecchia, Biancamaria
    TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (02) : 151 - 158
  • [33] Convergence analysis of modified Bernstein-Kantorovich type operators
    Senapati, Abhishek
    Kumar, Ajay
    Som, Tanmoy
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3749 - 3764
  • [34] Kantorovich-Stancu type Lototsky-Chlodowsky operators
    Serin, S. Kutlu
    Karsli, H.
    Yesildal, F. Tasdelen
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 512 - 522
  • [35] Some approximation results for generalized Kantorovich-type operators
    Mursaleen, Mohammad
    Khan, Faisal
    Khan, Asif
    Kilicman, Adem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [36] Approximation Degree of Bivariate Generalized λ-Bernstein - Kantorovich Type Operators
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    Singh, Sompal
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (12) : 1484 - 1509
  • [37] Szasz-Mirakjan-Kantorovich Operators Reproducing Affine Functions: Inverse Results
    Bustamante, Jorge
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [38] Modified Stancu type Dunkl generalization of Szasz-Kantorovich operators
    Milovanovic, Gradimir V.
    Mursaleen, M.
    Nasiruzzaman, Md.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) : 135 - 151
  • [39] Approximation by Max-Product Neural Network Operators of Kantorovich Type
    Danilo Costarelli
    Gianluca Vinti
    Results in Mathematics, 2016, 69 : 505 - 519
  • [40] Some density results by deep Kantorovich type neural network operators
    Sharma, Manju
    Singh, Uaday
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (02)