Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics

被引:6
作者
Thibivilliers, Sandra [1 ]
Libault, Marc [1 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Dept Agron & Hort, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
transcriptomics; single-cell omics; multi-omics analyses; spatial transcriptomics; cell-to-cell interactions; RECEPTOR-LIKE KINASE; GENE-EXPRESSION; ROOT EPIDERMIS; MULTI-OMICS; DIFFERENTIATION; PROTEIN; TRANSCRIPTOMICS; PROFILES; GLABRA2;
D O I
10.3389/fpls.2021.696811
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.
引用
收藏
页数:8
相关论文
共 65 条
[1]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[2]  
Aung K., 2020, BIORXIV, V12, P464, DOI [10.1101/2020.12.24.424262, DOI 10.1101/2020.12.24.424262]
[3]   Pathogenic Bacteria Target Plant Plasmodesmata to Colonize and Invade Surrounding Tissues[CC-BY] [J].
Aung, Kyaw ;
Kim, Panya ;
Li, Zhongpeng ;
Joe, Anna ;
Kvitko, Brian ;
Alfano, James R. ;
He, Sheng Yang .
PLANT CELL, 2020, 32 (03) :595-611
[4]  
Bezrutczyk M., 2020, BIORXIV PREPRINT, DOI [10.1101/2020.07.24.205583, DOI 10.1101/2020.07.24.205583]
[5]   A gene expression map of the Arabidopsis root [J].
Birnbaum, K ;
Shasha, DE ;
Wang, JY ;
Jung, JW ;
Lambert, GM ;
Galbraith, DW ;
Benfey, PN .
SCIENCE, 2003, 302 (5652) :1956-1960
[6]  
Butler A., 2020, BIORXIV PREPRINT, DOI [10.1101/2020.08.27.271130, DOI 10.1101/2020.08.27.271130]
[7]  
de Bruijn, 2020, MODEL LEGUME MEDICAG, P809
[8]   Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing [J].
Denyer, Tom ;
Ma, Xiaoli ;
Klesen, Simon ;
Scacchi, Emanuele ;
Nieselt, Kay ;
Timmermans, Marja C. P. .
DEVELOPMENTAL CELL, 2019, 48 (06) :840-+
[9]  
Di Cristina M, 1996, PLANT J, V10, P393, DOI 10.1046/j.1365-313X.1996.10030393.x
[10]   The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution [J].
Dorrity, Michael W. ;
Alexandre, Cristina M. ;
Hamm, Morgan O. ;
Vigil, Anna-Lena ;
Fields, Stanley ;
Queitsch, Christine ;
Cuperus, Josh T. .
NATURE COMMUNICATIONS, 2021, 12 (01)