Impact of Geometry on the Performance of Cantilever-Based Piezoelectric Vibration Energy Harvesters

被引:21
作者
Alameh, Abdul Hafiz [1 ]
Gratuze, Mathieu [1 ]
Nabki, Frederic [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Dept Elect Engn, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Vibration energy harvesting; piezoelectric; transducer; cantilever; geometry; resonant frequency; strain; output power; MEMS; OUTPUT;
D O I
10.1109/JSEN.2019.2932341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims at comparing micromachined cantilever structures with the purpose of providing design guidelines towards high performance energy harvesters such that they provide a good output power, resonant frequency and volume tradeoff, while considering microfabrication process limitations. Increasing the power output of piezoelectric energy harvesters by tapering the beams has been presented as promising solution in the literature. This paper investigates the power output of several geometric variations of cantilever beams, and examines the advantages of balancing the strain distribution throughout the beam. A comparison of the impact of different geometries is presented, and recommendations are given. Namely, eight rectangular and trapezoidal T-shaped designs are fabricated and benchmarked. Their resonant frequencies and power outputs are compared for the same available area (1800 mu m x 800 mu m). Measurements show that the trapezoidal designs can have a higher output power depending on the beam length to mass length ratio, in comparison to the rectangular T-designs that have lower frequencies. Resonant frequencies ranging from 2.9 to 7.2 kHz and power outputs ranging from 2.2 to 7.1 nW are reported.
引用
收藏
页码:10316 / 10326
页数:11
相关论文
共 30 条
  • [1] A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes
    Aktakka, Ethem Erkan
    Najafi, Khalil
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (09) : 2017 - 2029
  • [2] Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters
    Alameh, Abdul Hafiz
    Gratuze, Mathieu
    Elsayed, Mohannad Y.
    Nabki, Frederic
    [J]. SENSORS, 2018, 18 (05)
  • [3] Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading
    Andosca, Robert
    McDonald, T. Gus
    Genova, Vincent
    Rosenberg, Steven
    Keating, Joseph
    Benedixen, Cole
    Wu, Junru
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2012, 178 : 76 - 87
  • [4] Baker J., 2005, 3 INT EN CONV ENG C, P5617, DOI DOI 10.2514/6.2005-5617
  • [5] A micro electromagnetic generator for vibration energy harvesting
    Beeby, S. P.
    Torah, R. N.
    Tudor, M. J.
    Glynne-Jones, P.
    O'Donnell, T.
    Saha, C. R.
    Roy, S.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) : 1257 - 1265
  • [6] Piezoelectric Energy Harvesting Solutions
    Calio, Renato
    Rongala, Udaya Bhaskar
    Camboni, Domenico
    Milazzo, Mario
    Stefanini, Cesare
    de Petris, Gianluca
    Oddo, Calogero Maria
    [J]. SENSORS, 2014, 14 (03) : 4755 - 4790
  • [7] Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures
    Chuang, WH
    Luger, T
    Fettig, RK
    Ghodssi, R
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (05) : 870 - 879
  • [8] Cowen Allen., 2014, PiezoMUMPs design handbook
  • [9] Dompierre A., 2013, Energy Harvesting with Functional Materials and Microsystems, V23, P215
  • [10] Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system
    Elfrink, R.
    Renaud, M.
    Kamel, T. M.
    de Nooijer, C.
    Jambunathan, M.
    Goedbloed, M.
    Hohlfeld, D.
    Matova, S.
    Pop, V.
    Caballero, L.
    van Schaijk, R.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (10)