Detecting influential observations in Kernel PCA

被引:23
作者
Debruyne, Michiel [1 ]
Hubert, Mia [2 ]
Van Horebeek, Johan [3 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[2] KU Leuven LStat, Dept Math, B-3001 Louvain, Belgium
[3] Ctr Res Math CIMAT, Guanajuato 36000, Gto, Mexico
关键词
PRINCIPAL COMPONENT ANALYSIS; REGRESSION; ROBUSTNESS;
D O I
10.1016/j.csda.2009.08.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivity of Kernel PCA to individual observations is characterized by calculating the influence function. A robust Kernel PCA method is proposed by incorporating kernels in the Spherical PCA algorithm. Using the scores from Spherical Kernel PCA, a graphical diagnostic is proposed to detect points that are influential for ordinary Kernel PCA. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3007 / 3019
页数:13
相关论文
共 37 条
[1]   Kernel component analysis using an epsilon-insensitive robust loss function [J].
Alzate, Carlos ;
Suykens, Johan A. K. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (09) :1583-1598
[2]  
[Anonymous], 2004, KERNEL METHODS PATTE
[3]  
[Anonymous], 1974, J. R. Statist. Soc. Series C (Applied Statistics)
[4]   Statistical properties of kernel principal component analysis [J].
Blanchard, Gilles ;
Bousquet, Olivier ;
Zwald, Laurent .
MACHINE LEARNING, 2007, 66 (2-3) :259-294
[5]   Robust probabilistic PCA with missing data and contribution analysis for outlier detection [J].
Chen, Tao ;
Martin, Elaine ;
Montague, Gary .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) :3706-3716
[6]  
Christmann A, 2004, J MACH LEARN RES, V5, P1007
[7]   Consistency and robustness of kernel-based regression in convex risk minimization [J].
Christmann, Andreas ;
Steinwart, Ingo .
BERNOULLI, 2007, 13 (03) :799-819
[8]  
CRITCHLEY F, 1985, BIOMETRIKA, V72, P627, DOI 10.2307/2336735
[9]   High breakdown estimators for principal components: the projection-pursuit approach revisited [J].
Croux, C ;
Ruiz-Gazen, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) :206-226
[10]  
Croux C., 2002, Statistical Data Analysis Based on the L1-Norm and Related Methods, P257, DOI [10.1007/978-3-0348-8201-9_22, DOI 10.1007/978-3-0348-8201-9_22, 10.1007/978-3-0348-8201-9, DOI 10.1007/978-3-0348-8201-9]