On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

被引:19
作者
Chitraganti, Shaikshavali [1 ]
Aberkane, Samir [1 ]
Aubrun, Christophe [1 ]
Valencia-Palomo, Guillermo [2 ]
Dragan, Vasile [3 ]
机构
[1] Univ Lorraine, CRAN CNRS UMR 7039, F-54500 Vandoeuvre Les Nancy, France
[2] Inst Tecnol Hermosillo, Mexico City 83170, DF, Mexico
[3] Romanian Acad, Inst Math Simon Stoilow, Bucharest, Romania
关键词
Jump linear systems; Stochastic model predictive control; Probabilistic state constraints; Linear state-feedback; Second moment stability; MODEL-PREDICTIVE CONTROL; STOCHASTIC STABILITY; FEEDBACK-CONTROL; SUBJECT;
D O I
10.1016/j.sysconle.2014.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, a particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to the nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, we convert the probabilistic state constraints to deterministic constraints, and obtain a tractable deterministic receding horizon control problem. We consider the receding horizon control law to have a linear state-feedback and an admissible offset term. We ensure mean square boundedness of the state variable via solving linear matrix inequalities off-line, and solve the receding horizon control problem online with control offset terms. We illustrate the overall approach applied on a macroeconomic system. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 46 条
[11]   Probabilistic Constrained MPC for Multiplicative and Additive Stochastic Uncertainty [J].
Cannon, Mark ;
Kouvaritakis, Basil ;
Wu, Xingjian .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (07) :1626-1632
[12]   H∞ control of a class of discrete-time Markov jump linear systems with piecewise-constant TPs subject to average dwell time switching [J].
Chen, Lingjie ;
Leng, Yu ;
Guo, Haifeng ;
Shi, Ping ;
Zhang, Lixian .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (06) :1989-2003
[13]  
Chinneck J. W., 2007, Feasibility and Infeasibility in Optimization:: Algorithms and Computational Methods, V118
[14]   Constrained quadratic state feedback control of discrete-time Markovian jump linear systems [J].
Costa, OLV ;
Assumpcao, EO ;
Boukas, EK ;
Marques, RP .
AUTOMATICA, 1999, 35 (04) :617-626
[15]  
Costa OLV, 2005, DISCRETE TIME MARKOV
[16]   Receding horizon control of jump linear systems and a macroeconomic policy problem [J].
do Val, JBR ;
Basar, T .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1999, 23 (08) :1099-1131
[17]  
Dragan V., 2009, MATH METHODS ROBUST
[18]   Stochastic stability of jump linear systems [J].
Fang, YG ;
Loparo, KA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) :1204-1208
[19]   STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS [J].
FENG, XB ;
LOPARO, KA ;
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :38-53
[20]   A two-factor stochastic production model with two time scales [J].
Filar, JA ;
Haurie, A .
AUTOMATICA, 2001, 37 (10) :1505-1513