Long Time Memory of Lagrangian Acceleration Statistics in 2D and 3D Turbulence

被引:1
作者
Kamps, Oliver [1 ]
Wilczek, Michael [1 ]
机构
[1] Univ Munster, Ctr Nonlinear Sci, D-48149 Munster, Germany
来源
13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): PARTICLES IN TURBULENCE, TRANSPORT PROCESSES AND MIXING | 2011年 / 318卷
关键词
2-DIMENSIONAL TURBULENCE; BEHAVIOR; DYNAMICS; CASCADE;
D O I
10.1088/1742-6596/318/5/052033
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we report on a comparison of Lagrangian acceleration statistics in the direct energy cascade of three-dimensional turbulence and the corresponding observables for the case of the inverse energy cascade in two dimensions. We focus on the time scales describing the memory of the acceleration statistics of a tracer particle. We show that for both systems the Markov time scale, which is an indicator for the length of the memory of a stochastic process, is in the order of magnitude of the Lagrangian integral time scale. We also show that the decorrelation time for the cross-correlation between the squared components of the acceleration is larger than the integral time scale.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Multifractal statistics of Lagrangian velocity and acceleration in turbulence [J].
Biferale, L ;
Boffetta, G ;
Celani, A ;
Devenish, BJ ;
Lanotte, A ;
Toschi, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (06) :064502-1
[2]   Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior [J].
Boffetta, G ;
Celani, A ;
Vergassola, M .
PHYSICAL REVIEW E, 2000, 61 (01) :R29-R32
[3]   THE MULTIFRACTAL LAGRANGIAN NATURE OF TURBULENCE [J].
BORGAS, MS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 342 (1665) :379-411
[4]   Lagrangian dynamics of drift-wave turbulence [J].
Bos, W. J. T. ;
Kadoch, B. ;
Neffaa, S. ;
Schneider, K. .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (14) :1269-1277
[5]   Lagrangian velocity statistics in turbulent flows:: Effects of dissipation -: art. no. 214502 [J].
Chevillard, L ;
Roux, SG ;
Levêque, E ;
Mordant, N ;
Pinton, JF ;
Arneodo, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (21) :1-214502
[6]   Description of a turbulent cascade by a Fokker-Planck equation [J].
Friedrich, R ;
Peinke, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :863-866
[7]   Particle pair diffusion and persistent streamline topology in two-dimensional turbulence [J].
Goto, S ;
Vassilicos, JC .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-35
[8]   Bridging from Eulerian to Lagrangian statistics in 3D hydro- and magnetohydrodynamic turbulent flows [J].
Homann, H. ;
Kamps, O. ;
Friedrich, R. ;
Grauer, R. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Extreme lagrangian acceleration in confined turbulent flow [J].
Kadoch, Benjamin ;
Bos, Wouter J. T. ;
Schneider, Kai .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[10]   Exact relation between Eulerian and Lagrangian velocity increment statistics [J].
Kamps, O. ;
Friedrich, R. ;
Grauer, R. .
PHYSICAL REVIEW E, 2009, 79 (06)