Left-Invariant Lorentzian Flat Metrics on Lie Groups

被引:0
|
作者
Ben Haddou, Malika Ait [1 ]
Boucetta, Mohamed [2 ]
Lebzioui, Hicham [1 ]
机构
[1] Fac Sci Meknes, Meknes, Morocco
[2] Univ Cadi Ayyad, Fac Sci Gueliz, Marrakech, Morocco
关键词
Lie groups; Lie algebra; Flat Lorentzian metric; double extension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call the Lie algebra of a Lie group with a left invariant pseudo-Riemannian flat metric pseudo-Riemannian flat Lie algebra. We give a new proof of a classical result of Milnor on Riemannian flat Lie algebras. We reduce the study of Lorentzian flat Lie algebras to those with trivial center or those with degenerate center. We show that the double extension process can be used to construct all Lorentzian flat Lie algebras with degenerate center generalizing a result of Aubert-Medina on Lorentzian flat nilpotent Lie algebras. Finally, we give the list of Lorentzian flat Lie algebras with degenerate center up to dimension 6.
引用
收藏
页码:269 / 289
页数:21
相关论文
共 50 条
  • [41] Abnormal Extremals of Left-Invariant Sub-Finsler Quasimetrics on Four-Dimensional Lie Groups with Three-Dimensional Generating Distributions
    V. N. Berestovskii
    I. A. Zubareva
    Siberian Mathematical Journal, 2022, 63 : 620 - 636
  • [42] Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
    Sun, Yukai
    Dai, Xianzhe
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [43] Left-invariant nearly pseudo-Ka<spacing diaeresis>hler structures and the tangent Lie group
    Pham, David N.
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (3-4): : 515 - 522
  • [44] Four-dimensional Lorentzian Lie groups
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (04) : 496 - 509
  • [45] ON THE NONEXISTENCE OF LEFT-INVARIANT RICCI SOLITONS - A CONJECTURE AND EXAMPLES
    Taketomi, Y.
    Tamaru, H.
    TRANSFORMATION GROUPS, 2018, 23 (01) : 257 - 270
  • [46] On the boundary behavior of left-invariant Hitchin and hypo flows
    Belgun, Florin
    Cortes, Vicente
    Freibert, Marco
    Goertsches, Oliver
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 41 - 62
  • [47] Dolbeault cohomology of nilmanifolds with left-invariant complex structure
    Rollenske, Soenke
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 369 - 392
  • [48] Classification of complete left-invariant affine structures on the oscillator group
    Guediri, Mohammed
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (02) : 343 - 362
  • [49] Lie groups with flat Gauduchon connections
    Vezzoni, Luigi
    Yang, Bo
    Zheng, Fangyang
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 597 - 608
  • [50] Lie groups with flat Gauduchon connections
    Luigi Vezzoni
    Bo Yang
    Fangyang Zheng
    Mathematische Zeitschrift, 2019, 293 : 597 - 608