A Rigidity Property of Complete Systems of Mutually Unbiased Bases

被引:1
作者
Matolcsi, Mate [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Anal, Inst Math, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda 13-15, H-1053 Budapest, Hungary
关键词
Mutually unbiased bases; equiangular vectors;
D O I
10.1142/S1230161221500128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that for some unit vectors b(1), ... b(n) in C-d we have that for any j not equal k b(j) is either orthogonal to b(k) or vertical bar < b(j), b(k)>vertical bar(2) = 1/d (i.e., b(j) and b(k) are unbiased). We prove that if n = d(d + 1), then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into d + 1 orthonormal bases, all being mutually unbiased with respect to each other.
引用
收藏
页数:6
相关论文
共 14 条
[1]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[2]  
Belovs A, 2008, LECT NOTES COMPUT SC, V5393, P50, DOI 10.1007/978-3-540-89994-5_6
[3]   Mutually unbiased bases and Hadamard matrices of order six [J].
Bengtsson, Ingemar ;
Bruzda, Wojciech ;
Ericsson, Asa ;
Larsson, Jan-Ake ;
Tadej, Wojciech ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[4]  
Boykin PO, 2007, QUANTUM INF COMPUT, V7, P371
[5]   Maximal sets of mutually unbiased quantum states in dimension 6 [J].
Brierley, Stephen ;
Weigert, Stefan .
PHYSICAL REVIEW A, 2008, 78 (04)
[6]  
Chartrand G., 2012, A First Course in Graph Theory
[7]  
Collatz L., 1957, Abh Math Sem Univ Hamburg, V21, P63, DOI [10.1007/BF02941924, DOI 10.1007/BF02941924]
[8]   ON MUTUALLY UNBIASED BASES [J].
Durt, Thomas ;
Englert, Berthold-Georg ;
Bengtsson, Ingemar ;
Zyczkowski, Karol .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (04) :535-640
[9]   GEOMETRICAL DESCRIPTION OF QUANTAL STATE DETERMINATION [J].
IVANOVIC, ID .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (12) :3241-3245
[10]   A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6 [J].
Jaming, Philippe ;
Matolcsi, Mate ;
Mora, Peter ;
Szollosi, Ferenc ;
Weiner, Mihaly .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)