Connection between attached eddies, friction factor, and mean-velocity profile

被引:4
作者
Anbarlooei, H. R. [1 ]
Ramos, F. [1 ]
Cruz, D. O. A. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Math, Dept Appl Math, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, Mech Engn Program, Rio De Janeiro, Brazil
关键词
TURBULENT-BOUNDARY-LAYER; SKIN-FRICTION; PIPE; WALL; FLOW; LAWS;
D O I
10.1103/PhysRevFluids.7.024602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work connects the attached eddies to the wall friction by relating the momentum transfer normal to the lower bound of the energetic range with the wall shear stress. Evidence is provided to show that this balance is the property of a specific layer, l approximate to 3 root Re-tau, which coincides with the smallest attached eddies. As a result, our model predicts successfully the transition of the friction factor after the Blasius regime to the extreme Reynolds numbers range, and the resulting friction equation shows the same accuracy as the well-known logarithmic laws. This transition also affects the mean velocity profile. From the developed friction equation, a mean velocity profile is derived which is in accordance with the well-known log laws. Finally, it is conjectured that for high enough Reynolds numbers, both Prandtl's 1/7 power law and the velocity profile approximate the mean velocity simultaneously, however at different distances from the wall.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Spectral analysis of near-wall turbulence in channel flow at Reτ=4200 with emphasis on the attached-eddy hypothesis [J].
Agostini, Lionel ;
Leschziner, Michael .
PHYSICAL REVIEW FLUIDS, 2017, 2 (01)
[2]  
Anbarlooei H., 2021, 25 INT C THEOR APPL
[3]   New power-law scaling for friction factor of extreme Reynolds number pipe flows [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. .
PHYSICS OF FLUIDS, 2020, 32 (09)
[4]   On the connection between Kolmogorov microscales and friction in pipe flows of viscoplastic fluids [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Santos, C. M. M. ;
Silva Freire, A. P. .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :69-77
[5]   Phenomenological friction equation for turbulent flow of Bingham fluids [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Santos, Cecilia M. M. ;
Silva Freire, A. P. .
PHYSICAL REVIEW E, 2017, 96 (02)
[6]   Phenomenological Blasius-type friction equation for turbulent power-law fluid flows [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Silva Freire, A. P. .
PHYSICAL REVIEW E, 2015, 92 (06)
[7]  
[Anonymous], 1993, THESIS YALE U
[8]  
Barenblatt G.I., 2003, CAMBRIDGE TEXTS APPL, DOI DOI 10.1017/CBO9780511814921
[9]   Scaling laws for fully developed turbulent flow in pipes: Discussion of experimental data [J].
Barenblatt, GI ;
Chorin, AJ ;
Prostokishin, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (03) :773-776
[10]   Spectral link of the generalized Townsend-Perry constants in turbulent boundary layers [J].
Birnir, Bjorn ;
Angheluta, Luiza ;
Kaminsky, John ;
Chen, Xi .
PHYSICAL REVIEW RESEARCH, 2021, 3 (04)