Discriminative Correlation Filter with Channel and Spatial Reliability

被引:797
作者
Lukezic, Alan [1 ]
Vojir, Tomas [2 ]
Zajc, Luka Cehovin [1 ]
Matas, Jiri [2 ]
Kristan, Matej [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
[2] Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
关键词
OBJECT TRACKING;
D O I
10.1109/CVPR.2017.515
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term tracking is an open and challenging problem for which discriminative correlation filters (DCF) have shown excellent performance. We introduce the channel and spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process. The spatial reliability map adjusts the filter support to the part of the object suitable for tracking. This both allows to enlarge the search region and improves tracking of non-rectangular objects. Reliability scores reflect channel-wise quality of the learned filters and are used as feature weighting coefficients in localization. Experimentally, with only two simple standard features, HoGs and Colornames, the novel CSRDCF method -DCF with Channel and Spatial Reliability -achieves state-of-the-art results on VOT 2016, VOT 2015 and OTB100. The CSR-DCF runs in real-time on a CPU.
引用
收藏
页码:4847 / 4856
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 2006, BMVC06
[2]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.465
[3]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[4]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[5]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[6]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   Visual Object Tracking Performance Measures Revisited [J].
Cehovin, Luka ;
Leonardis, Ales ;
Kristan, Matej .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) :1261-1274
[9]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[10]  
Danelljan M., 2014, Proceedings of the British Machine Vision Conference (BMVC)