The effects of foliar application of ascorbic acid (Vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress

被引:89
作者
Dolatabadian, A. [1 ]
Sanavy, S. A. M. M. [1 ]
Chashmi, N. A. [2 ]
机构
[1] Tarbiat Modares Univ, Dept Agron, Fac Agr, Tehran 1411713116, Iran
[2] Tarbiat Modares Univ, Fac Sci, Dept Plant Sci, Tehran 1411713116, Iran
关键词
antioxidant enzymes; ascorbic acid; canola; lipid peroxidation; oxidative stress; salinity;
D O I
10.1111/j.1439-037X.2008.00301.x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The effects of salt stress on protein (PROT) content, lipid peroxidation, proline accumulation, chlorophyll (Chl) content, and superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) activity were studied in the leaves and roots of canola (Brassica napus L. cv. Okapi). Four weeks after sowing (at the V-4 stage), plants were exposed to salt stress by the application of NaCl solution (200 mM) for 6 days daily, After 6 days followed by foliar application of ascorbic acid (AsA) solution (25 mM). The activity of all the antioxidant enzymes assayed (except SOD in the roots) was increased significantly in the plants under conditions of salt stress. The application of AsA decreased enzyme activity in the leaves, but it had no effect on enzyme activity in the roots. The total PROT content of the leaves and roots decreased under the conditions of high salinity. AsA treatment of plants under salt stress increased the total PROT content significantly in both leaves and roots. Measurement of the malondialdehyde content of leaves and roots showed that lipid peroxidation was increased by interaction with damaging reactive oxygen species during salt stress, and that application of AsA reduced lipid peroxidation only in the leaves. The Chl content was also affected by salt stress. There was significant difference between the controls and salt-stress treatments in Chl content. The results of the present study indicate that usage of AsA reduces the harmful effects of salinity and increases resistance to salinity in canola plant.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 40 条
[1]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[2]  
Asada K., 1994, Causes of photooxidative stress and amelioration of defense systems in plants., P77
[3]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[4]   Salinity tolerance in Brassica oilseeds [J].
Ashraf, M ;
McNeilly, T .
CRITICAL REVIEWS IN PLANT SCIENCES, 2004, 23 (02) :157-174
[5]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[6]  
Bian Y. M., 1988, Plant Physiology Communications, P19
[7]   CELL-MEMBRANE STABILITY AS A MEASURE OF DROUGHT AND HEAT TOLERANCE IN WHEAT [J].
BLUM, A ;
EBERCON, A .
CROP SCIENCE, 1981, 21 (01) :43-47
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   EFFECT OF ALUMINUM ON LIPID-PEROXIDATION, SUPEROXIDE-DISMUTASE, CATALASE, AND PEROXIDASE-ACTIVITIES IN ROOT-TIPS OF SOYBEAN (GLYCINE-MAX) [J].
CAKMAK, I ;
HORST, WJ .
PHYSIOLOGIA PLANTARUM, 1991, 83 (03) :463-468
[10]   Effect of salt stress on antioxidant defence system in soybean root nodules [J].
Comba, ME ;
Benavides, MP ;
Tomaro, ML .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1998, 25 (06) :665-671