Nonrelativistic limit of Klein-Gordon-Maxwell to Schrodinger-Poisson

被引:23
作者
Bechouche, P [1 ]
Mauser, NJ [1 ]
Selberg, S [1 ]
机构
[1] Wolfgang Pauli Inst, A-1090 Vienna, Austria
关键词
D O I
10.1353/ajm.2004.0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in the nonrelativistic limit c --> infinity, where c is the speed of light, solutions of the Klein-Gordon-Maxwell system on R1+3 converge in the energy space C([0, T]; H-1) to solutions of a Schrodinger-Poisson system, under appropriate conditions on the initial data. This requires the splitting of the scalar Klein-Gordon field into a sum of two fields, corresponding, in the physical interpretation, to electrons and positrons. The proof relies on bilinear spacetime estimates related to the Klainerman-Machedon estimates, but taking into account the variation of the parameter c. A crucial fact is that the system has a null form structure in Coulomb gauge, as proved by Klainerman-Machedon.
引用
收藏
页码:31 / 64
页数:34
相关论文
共 22 条
[1]   (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field [J].
Bechouche, P ;
Mauser, NJ ;
Poupaud, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :405-425
[2]   L2 solutions to the Schrodinger-Poisson system:: Existence, uniqueness, time behaviour, and smoothing effects [J].
Castella, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (08) :1051-1083
[3]   DIRAC AND KLEIN-GORDON EQUATIONS - CONVERGENCE OF SOLUTIONS IN THE NON-RELATIVISTIC LIMIT [J].
CIRINCIONE, RJ ;
CHERNOFF, PR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (01) :33-46
[4]  
Goldstein H, 1980, CLASSICAL MECH
[5]  
Hormander L., 1990, Distribution theory and Fourier analysis, VI
[6]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[7]   SPACE-TIME ESTIMATES FOR NULL FORMS AND THE LOCAL EXISTENCE THEOREM [J].
KLAINERMAN, S ;
MACHEDON, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1221-1268
[8]  
KLAMERMAN S, 1994, DUKE MATH J, V74, P19
[9]   Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations [J].
Machihara, S ;
Nakanishi, K ;
Ozawa, T .
MATHEMATISCHE ANNALEN, 2002, 322 (03) :603-621
[10]  
Machihara S., 2001, FUNKC EKVACIOJ-SER I, V44, P243