In Vivo Applications of CRISPR-Based Genome Editing in the Retina

被引:26
|
作者
Yu, Wenhan [1 ]
Wu, Zhijian [1 ]
机构
[1] NEI, Ocular Gene Therapy Core, NIH, Bethesda, MD 20892 USA
关键词
CRISPR; genome editing; gene therapy; retinal degeneration; photoreceptors; AAV vector; MOUSE MODEL; GENE; DNA; CELLS; CANCER; NUCLEASES; MECHANISM; MUSCLE; REPAIR; ROD;
D O I
10.3389/fcell.2018.00053
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The rapidly evolving CRISPR-based genome editing technology is bringing revolutionary changes to the entirety of the life sciences. In this mini-review, we summarize the recent progress of in vivo applications of CRISPR genome editing in retinal studies. Non-viral and viral vector mediated delivery have been developed for temporary or persistent expression of CRISPR components in retinal cells. Although in theory CRISPR-based genome editing can correct a large number of mutant genes responsible for a variety of inherited retinal disorders (IRDs), precise gene modification relies on homology-directed repair (HDR)-the efficiency of which is not currently high enough for meaningful benefit. Development of CRISPR-based treatment for retinal diseases thus far has been mainly focused on gene knock-out or gene deletion in which the highly efficient non-homologous end joining (NHEJ) repair pathway is involved. Therapeutic benefits have been achieved in a few rodent models of retinal diseases following CRISPR treatment. The in vivo applications of CRISPR have also facilitated studies of gene function in the retina. As off-target events and immune responses are still the major concerns, continuous development of safer CRISPR genome editing systems is prerequisite for its clinical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Recent advances of CRISPR-based genome editing for enhancing staple crops
    Chen, Feng
    Chen, Lu
    Yan, Zhao
    Xu, Jingyuan
    Feng, Luoluo
    He, Na
    Guo, Mingli
    Zhao, Jiaxiong
    Chen, Zhijun
    Chen, Huiqi
    Yao, Gengzhen
    Liu, Chunping
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [42] Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine
    Sioson, Victor Aaron
    Kim, Minjong
    Joo, Jinmyoung
    BIOMEDICAL ENGINEERING LETTERS, 2021, 11 (03) : 217 - 233
  • [43] Advances in Off-Target Detection for CRISPR-Based Genome Editing
    Wang, Haozheng
    Wang, Yangmin
    Luo, Zhongtao
    Lin, Xinjian
    Liu, Meilin
    Wu, Fenglin
    Shao, Hongwei
    Zhang, Wenfeng
    HUMAN GENE THERAPY, 2023, 34 (3-4) : 112 - 128
  • [44] CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases
    Rasoulinejad, Seyed Ahmad
    Maroufi, Faezeh
    MOLECULAR BIOTECHNOLOGY, 2021, 63 (09) : 768 - 779
  • [45] Refining CRISPR-based genome and epigenome editing off-targets
    Yonglun Luo
    Cell Biology and Toxicology, 2019, 35 : 281 - 283
  • [46] CRISPR-based genome editing in wheat: a comprehensive review and future prospects
    Kumar, Rakesh
    Kaur, Amandeep
    Pandey, Ankita
    Mamrutha, H. M.
    Singh, G. P.
    MOLECULAR BIOLOGY REPORTS, 2019, 46 (03) : 3557 - 3569
  • [47] CRISPR-based genome editing in primary human pancreatic islet cells
    Bevacqua, Romina J.
    Dai, Xiaoqing
    Lam, Jonathan Y.
    Gu, Xueying
    Friedlander, Mollie S. H.
    Tellez, Krissie
    Miguel-Escalada, Irene
    Bonas-Guarch, Silvia
    Atla, Goutham
    Zhao, Weichen
    Kim, Seung Hyun
    Dominguez, Antonia A.
    Qi, Lei S.
    Ferrer, Jorge
    MacDonald, Patrick E.
    Kim, Seung K.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [48] Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine
    Victor Aaron Sioson
    Minjong Kim
    Jinmyoung Joo
    Biomedical Engineering Letters, 2021, 11 : 217 - 233
  • [49] Refining CRISPR-based genome and epigenome editing off-targets
    Luo, Yonglun
    CELL BIOLOGY AND TOXICOLOGY, 2019, 35 (04) : 281 - 283
  • [50] Implications of human genetic variation in CRISPR-based therapeutic genome editing
    Scott, David A.
    Zhang, Feng
    NATURE MEDICINE, 2017, 23 (09) : 1095 - +