In Vivo Applications of CRISPR-Based Genome Editing in the Retina

被引:26
|
作者
Yu, Wenhan [1 ]
Wu, Zhijian [1 ]
机构
[1] NEI, Ocular Gene Therapy Core, NIH, Bethesda, MD 20892 USA
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2018年 / 6卷
关键词
CRISPR; genome editing; gene therapy; retinal degeneration; photoreceptors; AAV vector; MOUSE MODEL; GENE; DNA; CELLS; CANCER; NUCLEASES; MECHANISM; MUSCLE; REPAIR; ROD;
D O I
10.3389/fcell.2018.00053
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The rapidly evolving CRISPR-based genome editing technology is bringing revolutionary changes to the entirety of the life sciences. In this mini-review, we summarize the recent progress of in vivo applications of CRISPR genome editing in retinal studies. Non-viral and viral vector mediated delivery have been developed for temporary or persistent expression of CRISPR components in retinal cells. Although in theory CRISPR-based genome editing can correct a large number of mutant genes responsible for a variety of inherited retinal disorders (IRDs), precise gene modification relies on homology-directed repair (HDR)-the efficiency of which is not currently high enough for meaningful benefit. Development of CRISPR-based treatment for retinal diseases thus far has been mainly focused on gene knock-out or gene deletion in which the highly efficient non-homologous end joining (NHEJ) repair pathway is involved. Therapeutic benefits have been achieved in a few rodent models of retinal diseases following CRISPR treatment. The in vivo applications of CRISPR have also facilitated studies of gene function in the retina. As off-target events and immune responses are still the major concerns, continuous development of safer CRISPR genome editing systems is prerequisite for its clinical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Basic Principles and Clinical Applications of CRISPR-Based Genome Editing
    Lim, Jung Min
    Kim, Hyongbum Henry
    YONSEI MEDICAL JOURNAL, 2022, 63 (02) : 105 - 113
  • [2] CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement
    Zegeye, Workie Anley
    Tsegaw, Mesfin
    Zhang, Yingxin
    Cao, Liyong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)
  • [3] CRISPR-Based Genome Editing and Its Applications in Woody Plants
    Min, Tian
    Hwarari, Delight
    Li, Dong'ao
    Movahedi, Ali
    Yang, Liming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [4] Clinical applications of CRISPR-based genome editing and diagnostics
    Foss, Dana V.
    Hochstrasser, Megan L.
    Wilson, Ross C.
    TRANSFUSION, 2019, 59 (04) : 1389 - 1399
  • [5] Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine
    Sioson, Victor Aaron
    Kim, Minjong
    Joo, Jinmyoung
    BIOMEDICAL ENGINEERING LETTERS, 2021, 11 (03) : 217 - 233
  • [6] Advances in Off-Target Detection for CRISPR-Based Genome Editing
    Wang, Haozheng
    Wang, Yangmin
    Luo, Zhongtao
    Lin, Xinjian
    Liu, Meilin
    Wu, Fenglin
    Shao, Hongwei
    Zhang, Wenfeng
    HUMAN GENE THERAPY, 2023, 34 (3-4) : 112 - 128
  • [7] Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research
    Li, Zhen-Hua
    Wang, Jun
    Xu, Jing-Ping
    Wang, Jian
    Yang, Xiao
    MILITARY MEDICAL RESEARCH, 2023, 10 (01)
  • [8] CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors
    Wang, Dan
    Zhang, Feng
    Gao, Guangping
    CELL, 2020, 181 (01) : 136 - 150
  • [9] Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing
    Clarissa, Elizabeth Maria
    Karmacharya, Mamata
    Choi, Hyunmin
    Kumar, Sumit
    Cho, Yoon-Kyoung
    SMALL, 2025,
  • [10] CRISPR-based genome editing of zebrafish
    Sharma, Preeti
    Sharma, B. Sharan
    Verma, Ramtej J.
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT B, 2021, 180 : 69 - 84