Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form

被引:12
作者
Li, TT [1 ]
Peng, YJ
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Univ Clermont Ferrand, CNRS, UMR 6620, Lab Math Appl, F-63177 Aubiere, France
关键词
cauchy problem; global C-1 solution; quasi-linear hyperbolic system of diagonal form; weakly linearly degenerate characteristics;
D O I
10.1016/j.na.2003.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for quasi-linear strictly hyperbolic systems of diagonal form with weakly linearly degenerate characteristics. The global existence and uniqueness of C-1 solution with initial data phi in C-b(1)(R) boolean AND W-1,W-1(R) are proved when the L-1(R) norm of phi or the C-0(R) norm of phi' is small. We also give some examples to show that if the initial data are not in W-1,W-1(R) or not small, then the solution to the Cauchy problem may blow up in a finite time. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:937 / 949
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 1985, DUKE U MATH SERIES
[2]  
[Anonymous], SYSTEMS QUASILINEAR
[3]  
JOHN F, 1990, NONLINEAR WAVES EQUA
[5]  
Li T. T., 1994, GLOBAL CLASSICAL SOL, V32
[6]  
Li TT, 1997, NONLINEAR ANAL-THEOR, V28, P1299
[7]  
LI TT, 1981, P ROY SOC EDINB A, V87, P255
[8]  
Serre D., 1996, Systemes de lois de conservation. I: Hyperbolicite, entropies, ondes de choc (French)
[9]   Pointwise estimates of solutions to cauchy problem for quasilinear hyperbolic systems [J].
Wang, WK ;
Yang, XF .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2003, 24 (04) :457-468
[10]   Global classical solutions with small initial total variation for quasilinear hyperbolic systems [J].
Yan, P .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (03) :335-348