Multi-focus image fusion based on fully convolutional networks

被引:11
作者
Guo, Rui [1 ,2 ]
Shen, Xuan-jing [1 ,2 ]
Dong, Xiao-yu [1 ,2 ]
Zhang, Xiao-li [1 ,2 ]
机构
[1] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-focus image fusion; Fully convolutional networks; Skip layer; Performance evaluation; TP37; PERFORMANCE;
D O I
10.1631/FITEE.1900336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a multi-focus image fusion method, in which a fully convolutional network for focus detection (FD-FCN) is constructed. To obtain more precise focus detection maps, we propose to add skip layers in the network to make both detailed and abstract visual information available when using FD-FCN to generate maps. A new training dataset for the proposed network is constructed based on dataset CIFAR-10. The image fusion algorithm using FD-FCN contains three steps: focus maps are obtained using FD-FCN, decision map generation occurs by applying a morphological process on the focus maps, and image fusion occurs using a decision map. We carry out several sets of experiments, and both subjective and objective assessments demonstrate the superiority of the proposed fusion method to state-of-the-art algorithms.
引用
收藏
页码:1019 / 1033
页数:15
相关论文
共 34 条
[11]   Fusion of range and color images for denoising and resolution enhancement with a non-local filter [J].
Huhle, Benjamin ;
Schairer, Timo ;
Jenke, Philipp ;
Strasser, Wolfgang .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (12) :1336-1345
[12]   Multi-focusing algorithm for microscopy imagery in assembly line using low-cost camera [J].
Juocas, Lukas ;
Raudonis, Vidas ;
Maskeliunas, Rytis ;
Damasevicius, Robertas ;
Wozniak, Marcin .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 102 (9-12) :3217-3227
[13]   Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior [J].
Kim, Kwang In ;
Kwon, Younghee .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (06) :1127-1133
[14]   Pixel-level image fusion: A survey of the state of the art [J].
Li, Shutao ;
Kang, Xudong ;
Fang, Leyuan ;
Hu, Jianwen ;
Yin, Haitao .
INFORMATION FUSION, 2017, 33 :100-112
[15]   Image Fusion with Guided Filtering [J].
Li, Shutao ;
Kang, Xudong ;
Hu, Jianwen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) :2864-2875
[16]   Image matting for fusion of multi-focus images in dynamic scenes [J].
Li, Shutao ;
Kang, Xudong ;
Hu, Jianwen ;
Yang, Bin .
INFORMATION FUSION, 2013, 14 (02) :147-162
[17]   Multifocus image fusion using artificial neural networks [J].
Li, ST ;
Kwok, JT ;
Wang, YN .
PATTERN RECOGNITION LETTERS, 2002, 23 (08) :985-997
[18]   Multi-focus image fusion with a deep convolutional neural network [J].
Liu, Yu ;
Chen, Xun ;
Peng, Hu ;
Wang, Zengfu .
INFORMATION FUSION, 2017, 36 :191-207
[19]   Multi-scale convolutional neural network for multi-focus image fusion [J].
Mustafa, Hafiz Tayyab ;
Yang, Jie ;
Zareapoor, Masoumeh .
IMAGE AND VISION COMPUTING, 2019, 85 :26-35
[20]  
Piella G, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P173