Temperature dependence of radiative and Auger losses in quantum well lasers

被引:0
|
作者
Hader, J. [1 ,2 ]
Moloney, J. V. [1 ,2 ]
Koch, S. W. [3 ]
机构
[1] Nonlinear Control Strategies Inc, 5669 N Oracle Rd,Suite 2001, Tucson, AZ 85704 USA
[2] Univ Arizona, Opt Sci Ctr, Tucson, AZ 85721 USA
[3] Philipps Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
来源
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVI | 2008年 / 6889卷
关键词
semiconductor laser; photo luminescence; gain; Auger recombination;
D O I
10.1117/12.761976
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fully microscopic many-body models are used to investigate the,temperature dependence of radiative and Auger losses in semiconductor lasers. Classical estimates based on simplified models predict carrier density independent temperature dependencies, I/T for the radiative losses and a temperature activated exponential dependence for the Auger losses. Instead, the microscopic models reveal for the example of a typical InGaAsP-based structure a I/T-3-dependence for the radiative losses at low carrier densities. For high densities this dependence becomes much weaker and deviates from a simple power law. Auger losses can be described by an exponential dependence for limited temperature ranges if a density dependent activation energy is used. For the threshold carrier density a temperature dependence close to T-2 is found instead of the linear temperature dependence assumed by the simplified models.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Peculiar Temperature-Power Dependence of AlGaAs/GaAs Multi Quantum Well
    Abdellatif, M. H.
    Song, Jin Dong
    Choi, Won Jun
    Cho, Nam Ki
    Lee, Jung Il
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (07) : 6072 - 6075
  • [32] Temperature Dependence of the Spontaneous Emission Factor in Subwavelength Semiconductor Lasers
    Smalley, Joseph S. T.
    Gu, Qing
    Fainman, Yeshaiahu
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2014, 50 (03) : 175 - 185
  • [33] Auger Capture Induced Carrier Heating in Quantum Dot Lasers and Amplifiers
    Uskov, Alexander V.
    Meuer, Christian
    Schmeckebier, Holger
    Bimberg, Dieter
    APPLIED PHYSICS EXPRESS, 2011, 4 (02)
  • [34] Auger recombination and leakage in InGaN/GaN quantum well LEDs
    Roemer, Friedhard
    Deppner, Marcus
    Range, Christian
    Witzigmann, Bernd
    GALLIUM NITRIDE MATERIALS AND DEVICES IX, 2014, 8986
  • [35] Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers
    Saxena, Dhruv
    Jiang, Nian
    Yuan, Xiaoming
    Mokkapati, Sudha
    Guo, Yanan
    Tan, Hark Hoe
    Jagadish, Chennupati
    NANO LETTERS, 2016, 16 (08) : 5080 - 5086
  • [36] High-temperature mid-IR type-II quantum well lasers
    Meyer, JR
    Felix, CL
    Malin, JI
    Vurgaftman, I
    Hoffman, CA
    Lin, CH
    Chang, PC
    Murry, SJ
    Yang, RQ
    Pei, SS
    RamMohan, LR
    IN-PLANE SEMICONDUCTOR LASERS: FROM ULTRAVIOLET TO MIDINFRARED, 1997, 3001 : 309 - 320
  • [37] High Characteristic Temperature InGaAsP/InP Tunnel Injection Multiple-Quantum-Well Lasers
    Wang Yang
    Qiu Ying-Ping
    Pan Jiao-Qing
    Zhao Ling-Juan
    Zhu Hong-Liang
    Wang Wei
    CHINESE PHYSICS LETTERS, 2010, 27 (11)
  • [38] Temperature Dependence of the Parameters of 1.55-μm Semiconductor Lasers with Thin Quantum Wells Based on Phosphorus-Free Heterostructures
    Maksimov, M. V.
    Shernyakov, Yu. M.
    Zubov, F. I.
    Novikov, I. I.
    Gladyshev, A. G.
    Karachinsky, L. Ya.
    Denisov, D. V.
    Rochas, S. S.
    Kolodeznyi, E. S.
    Egorov, A. Yu.
    Zhukov, A. E.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (06) : 549 - 552
  • [39] Influence of Auger recombination on the temperature sensitivity of bulk and strained quantum well 1.3 mu m semiconductor laser
    Silver, M
    Phillips, AF
    OReilly, EPO
    Adams, AR
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES IV, 1996, 2693 : 592 - 599
  • [40] Temperature dependence of exciton Auger decay process in cuprous oxide
    Liu, Yingmei
    Snoke, David
    SOLID STATE COMMUNICATIONS, 2006, 140 (3-4) : 208 - 213