A Case-Based Reasoning Approach to GBM Evolution

被引:0
作者
Mendonca, Ana [1 ]
Pereira, Joana [1 ]
Reis, Rita [1 ]
Alves, Victor [2 ]
Abelha, Antonio [2 ]
Ferraz, Filipa [1 ,2 ]
Neves, Joao [3 ]
Ribeiro, Jorge [4 ]
Vicente, Henrique [2 ,5 ]
Neves, Jose [2 ]
机构
[1] Univ Minho, Escola Engn, Dept Informat, Braga, Portugal
[2] Univ Minho, Ctr Algoritmi, Braga, Portugal
[3] Mediclin Arabian Ranches, POB 282602, Dubai, U Arab Emirates
[4] Inst Politecn Viana do Castelo, Escola Super Tecnol & Gestao, Viana Do Castelo, Portugal
[5] Univ Evora, Dept Quim, Escola Ciencias & Tecnol, Ctr Quim Evora, Evora, Portugal
来源
COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II | 2018年 / 11056卷
关键词
Artificial Intelligence; GlioBlastoma Multiforme; Logic Programming; Knowledge Representation and Reasoning; Case Based Reasoning; FRAMEWORK;
D O I
10.1007/978-3-319-98446-9_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
GlioBastoma Multiforme (GBM) is an aggressive primary brain tumor characterized by a heterogeneous cell population that is genetically unstable and resistant to chemotherapy. Indeed, despite advances in medicine, patients diagnosed with GBM have a median survival of just one year. Magnetic Resonance Imaging (MRI) is the most widely used imaging technique for determining the location and size of brain tumors. Indisputably, this technique plays a major role in the diagnosis, treatment planning, and prognosis of GBM. Therefore, this study proposes a new Case Based Reasoning approach to problem solving that attempts to predict a patient's GBM volume after five months of treatment based on features extracted from MR images and patient attributes such as age, gender, and type of treatment.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 16 条
  • [1] AAMODT A, 1994, AI COMMUN, V7, P39
  • [2] Using Case-Based Reasoning and Principled Negotiation to provide decision support for dispute resolution
    Carneiro, Davide
    Novais, Paulo
    Andrade, Francisco
    Zeleznikow, John
    Neves, Jose
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 36 (03) : 789 - 826
  • [3] Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients
    Chaddad, Ahmad
    Tanougast, Camel
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (11) : 1707 - 1718
  • [4] A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis
    El-Sappagh, Shaker
    Elmogy, Mohammed
    Riad, A. M.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 65 (03) : 179 - 208
  • [5] Fernandes F, 2015, 2015 SCIENCE AND INFORMATION CONFERENCE (SAI), P362, DOI 10.1109/SAI.2015.7237169
  • [6] Ferreira MaiaNeves., 1984, P 1984 ANN C ACM 5 G, V84, P50, DOI [10.1145/800171.809603, DOI 10.1145/800171.809603]
  • [7] Classifying Glioblastoma Multiforme Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI Features
    Ion-Margineanu, Adrian
    Van Cauter, Sofie
    Sima, Diana M.
    Maes, Frederik
    Sunaert, Stefen
    Himmelreich, Uwe
    Van Huffel, Sabine
    [J]. FRONTIERS IN NEUROSCIENCE, 2017, 10
  • [8] Kakas AC., 1998, HDB LOGIC ARTIFICIAL, P235, DOI DOI 10.1093/OSO/9780198537922.003.0007
  • [9] Neves J, 2007, LECT NOTES ARTIF INT, V4874, P160
  • [10] Pereira LM, 2009, STUD COMPUT INTELL, V199, P51