Amelioration of interface state response using band engineering in III-V quantum well metal-oxide-semiconductor field-effect transistors

被引:10
作者
Yuan, Ze [1 ]
Nainani, Aneesh [1 ,3 ]
Bennett, Brian R. [2 ]
Boos, J. Brad [2 ]
Ancona, Mario G. [2 ]
Saraswat, Krishna C. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] USN, Res Lab, Elect Sci & Technol Div, Washington, DC 20375 USA
[3] Appl Mat Inc, Santa Clara, CA 95054 USA
关键词
CAPACITORS; GAAS;
D O I
10.1063/1.3699226
中图分类号
O59 [应用物理学];
学科分类号
摘要
Performance degradation due to interfacial traps is generally considered as one of the main challenges for III-V metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this work, we have investigated the suppression of interface state response using band engineering in III-V quantum well MOSFETs and experimentally verified the concept in the antimonide materials system using a gate-stack consisting of Al2O3/GaSb/InAlSb. It is shown that if the thickness of the interfacial layer of GaSb is scaled down to a few monolayers, the effective bandgap of the interfacial layer increases dramatically due to quantum confinement, which leads to the suppression of interface-trap response. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699226]
引用
收藏
页数:4
相关论文
共 26 条
[1]   Enhancement-Mode Antimonide Quantum-Well MOSFETs With High Electron Mobility and Gigahertz Small-Signal Switching Performance [J].
Ali, Ashkar ;
Madan, Himanshu ;
Agrawal, Ashish ;
Ramirez, Israel ;
Misra, Rajiv ;
Boos, J. Brad ;
Bennett, Brian R. ;
Lindemuth, Jeff ;
Datta, Suman .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (12) :1689-1691
[2]   Mobility enhancement in strained p-InGaSb quantum wells [J].
Bennett, Brian R. ;
Ancona, Mario G. ;
Brad Boos, J. ;
Shanabrook, Benjamin V. .
APPLIED PHYSICS LETTERS, 2007, 91 (04)
[3]   Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors [J].
Bennett, Brian R. ;
Ancona, Mario G. ;
Boos, J. Brad ;
Canedy, Corwyn B. ;
Khan, Saara A. .
JOURNAL OF CRYSTAL GROWTH, 2008, 311 (01) :47-53
[4]   Effective reduction of interfacial traps in Al2O3/GaAs (001) gate stacks using surface engineering and thermal annealing [J].
Chang, Y. C. ;
Merckling, C. ;
Penaud, J. ;
Lu, C. Y. ;
Wang, W. -E. ;
Dekoster, J. ;
Meuris, M. ;
Caymax, M. ;
Heyns, M. ;
Kwo, J. ;
Hong, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (11)
[5]   Atomistic approach to thickness-dependent bandstructure calculation of InSb [J].
Guan, Ximeng ;
Yu, Zhiping .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2007, 6 (01) :101-105
[6]   Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters [J].
Jancu, JM ;
Scholz, R ;
Beltram, F ;
Bassani, F .
PHYSICAL REVIEW B, 1998, 57 (11) :6493-6507
[7]   Ultrathin HfO2 (equivalent oxide thickness=1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation [J].
Kim, Hyoung-Sub ;
Ok, Injo ;
Zhang, Manhong ;
Choi, Changhwan ;
Lee, Tackhwi ;
Zhu, Feng ;
Thareja, Gaurav ;
Yu, Lu ;
Lee, Jack C. .
APPLIED PHYSICS LETTERS, 2006, 88 (25)
[8]   The effects of wet surface clean and in situ interlayer on In0.52Al0.48As metal-oxide-semiconductor characteristics [J].
Kobayashi, Masaharu ;
Thareja, Gaurav ;
Sun, Yun ;
Goel, Niti ;
Garner, Mike ;
Tsai, Wilman ;
Pianetta, Piero ;
Nishi, Yoshio .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[9]   Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer -: art. no. 022106 [J].
Koveshnikov, S ;
Tsai, W ;
Ok, I ;
Lee, JC ;
Torkanov, V ;
Yakimov, M ;
Oktyabrsky, S .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[10]   Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures [J].
Lee, S ;
Oyafuso, F ;
von Allmen, P ;
Klimeck, G .
PHYSICAL REVIEW B, 2004, 69 (04)