On the level sets of the resolvent norm of a linear operator

被引:35
作者
Shargorodsky, E. [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
D O I
10.1112/blms/bdn038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a bounded linear operator on a Banach space and a closed densely defined operator on a Hilbert space with resolvent norms that are constant in a neighbourhood of zero. We also discuss cases where the norm of the resolvent of a bounded linear operator cannot be constant on an open set.
引用
收藏
页码:493 / 504
页数:12
相关论文
共 19 条
  • [1] [Anonymous], 1976, GEOMETRY BANACH SPAC
  • [2] Can spectral value sets of Toeplitz band matrices jump?
    Böttcher, A
    Grudsky, SM
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 99 - 116
  • [3] Bottcher A., 1994, J. Integral Equations Appl., V6, P267
  • [4] BOTTCHER A., 1997, NEW YORK J MATH, V3, P1
  • [5] Bottcher A., 2005, SPECTRAL PROPERTIES
  • [6] CAROTHERS NL, 2005, SHORT COURSE BANACH
  • [7] CHAITINCHATELIN F, 2005, TRPA9808 CERFACS
  • [8] Clarkson JA, 1936, T AM MATH SOC, V40, P396
  • [9] Day M.M., 1941, Bull. Am. Math. Soc., V47, P313, DOI 10.1090/S0002-9904-1941-07451-3
  • [10] On convexity properties of ψ-direct sums of Banach spaces
    Dowling, PN
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) : 540 - 543